Jet production in association with vector bosons at LHC with the CMS detector

Jet rates in W/Z+jets
Azimuthal correlations and event shapes in Z+jets

Pieriulio Lenzi – CERN
On behalf of the CMS collaboration
ICHEP 2012
V+jets at LHC

- Important for two broad classes of reasons
 - It is an ubiquitous source of background for virtually any signal (both SM and searches) at a hadron collider
 - It is a tool to test the predictions of perturbative QCD
 - The current understanding of our detector allows us to do **precision** QCD measurements
- 2010 and 2011 LHC data recorded by the CMS detector at 7 TeV provided high statistics for precision tests of perturbative QCD predictions and Monte Carlo techniques
Available predictions

- Accurate predictions for W/Z+jets production at the LHC are available

- Monte Carlo event generators
 - NLO + parton shower (MC@NLO, POWHEG...)
 - LO (many legs) + parton shower (Alpgen, MadGraph, Sherpa)

- Parton level codes for distributions at NLO
 - BlackHat, Rocket...

- Modern parton distribution functions
 - LHC data start to contribute to PDF fits
CMS published jet rates and related observables for W/Z+jets using 2010 36pb⁻¹ data sample and selecting the electron and muon decay channels

- Jet rates normalized to the inclusive cross section
- Ratios of events with n/n-1 jets
- Ratios of W/Z versus the number of jets
- W charge asymmetry versus the number of jets

The use of ratios allows the cancellation of several systematic uncertainties either completely...

- Luminosity in particular

...or largely

- Jet energy scale in particular

All results are quoted in the leptonic kinematic acceptance and detector effects have been unfolded
Event selection

- $p_T(l) > 20$ GeV, $|\eta| < 2.4$,
 - Z: $60 \text{GeV} < M(\ell\ell) < 120 \text{GeV}$
 - W: $M_T > 20$ GeV

- Jets definition
 - anti-kt algorithm with radius parameter 0.5 and p_T threshold of 30 GeV and $|\eta| < 2.4$
 - The average energy added by pile-up interactions has been removed with the FastJet median subtraction techniques on an event by event basis
Jet rates

- Normalized to the inclusive cross section
- \(n/(n-1) \) jets
- The comparison to the predictions of multi-leg matrix element + parton shower (Madgraph) shows good agreement
 - Pure parton shower (Pythia) fails to predict multi-jet final states
- Given the pT threshold on jets the sensitivity to underlying event is negligible
Double ratio

- Defined as \[
\frac{\sigma(W+\text{jet})/\sigma(W)}{\sigma(Z+\text{jet})/\sigma(Z)}\]
- It is an observable with very small systematic uncertainty
- Jet energy scale systematic cancels almost completely
Charge asymmetry

- Charge asymmetry \[\frac{\sigma(W^+)-\sigma(W^-)}{\sigma(W^+)+\sigma(W^-)}\] as a function of jet multiplicity

- Depends on the number of associated jets due to the fraction of u (d) quarks contributing to the different multiplicities

- It was measured fitting for the two charges independently

- Good agreement with Madgraph+Pythia predictions

- Parton shower only (Pythia) departs from data already for jet multiplicity=1
Azimuthal correlation in Z+jets

- In depth characterization of the topology of Z+jets using 2011 CMS data (5 fb⁻¹)
 https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEWK11021
 - Full kinematic information is available for Z
- Useful as a test of QCD predictions and for searches
 - Searches with invisible Z irreducible background, searches for resonances decaying in Z+X
- We measured the azimuthal correlation between the Z and the leading jet, and between the jets
 - Both inclusively and in a boosted Z regime, pT(Z)>150 GeV
- Jet reconstruction:
 - anti-kt with radius of 0.5 and pT>50 GeV
- Event selection:
 - pT(l)>20GeV, |η|<2.4, 71GeV<M(ll)<111GeV, at least one jet with pT>50GeV, |η|<2.5
- Results unfolded at particle level
- Muon and electron lepton flavors are combined at “dressed” level
- Shows a peak for Z back to back to the jet, and a long tail for events with many jets

- Both Sherpa (version 1.3.1. with default tune) and Madgraph give a good description of data
 - Sherpa slightly undershoots at intermediate values
 - Fewer events at intermediate jet multiplicity
 - Pythia is unable to describe multi-jet configurations

Error bars on data points: statistical uncertainty after unfolding
Shaded blue band: total data systematic
\(\Delta \phi(Z, J_1) \)

- Shows a peak for Z back to back to the jet and a long tail for events with many jets

- Both Sherpa (version 1.3.1. with default tune) and Madgraph give a good description of data
 - Sherpa slightly undershoots at intermediate values
 - Fewer events at intermediate jet multiplicity
 - Pythia is unable to describe multi-jet configurations

Error bars on data points: statistical uncertainty after unfolding
Shaded blue band: total data systematic
Hatched band: statistical uncertainty on Madgraph
Another way of looking at angular correlations in Z+jets is through event shapes:

- It embeds more information than angular separation.
- It holds information from momenta.

The transverse momentum of the Z and of the jets are used as input to the computation of the transverse thrust.

- The peak at $\Delta \Phi = \pi$ gets diluted in a long tail.
- Madgraph shows nice agreement with data.
- Sherpa is shifted to the left.
- Consistent with the pattern observed in the $\Delta \Phi$ distribution:
 - Fewer events with many jets.

$\tau_\perp \equiv 1 - \max \frac{\sum_i |\vec{p}_{\perp i} \cdot \vec{n}_T|}{\sum_i p_{\perp i}}$

CMS preliminary, $\sqrt{s} = 7$ TeV, L=5.0 fb$^{-1}$
- Another way of looking at angular correlations in Z+jets is through event shapes
 - It embeds more information than angular separation
 - It holds information from momenta
- The transverse momentum of the Z and of the jets are used as input to the computation of the transverse thrust
 - The peak at $\Delta \Phi = \pi$ gets diluted in a long tail
- Madgraph shows nice agreement with data
- Sherpa is shifted to the left
 - Consistent with the pattern observed in the $\Delta \Phi$ distribution
 - Fewer events with many jets
$\Delta \phi (Z, J1)$ with $p_T Z > 150$ GeV

- The request of high p_T for the Z boson enhances configurations with most of the hadronic activity recoiling in the other direction.
- Distributions become flatter.
 - When the Z recoils against a hard jet an additional jet is less correlated with the Z direction than it was in the inclusive case.
- In this Z+1 jet dominated phase space, the discrepancy with Pythia is less evident.
Δϕ(Z, J1) with ptZ > 150 GeV

- The request of high pT for the Z boson enhances configurations with most of the hadronic activity recoiling in the other direction.

- Distributions become flatter.
 - When the Z recoils against a hard jet an additional jet is less correlated with the Z direction than it was in the inclusive case.

- In this Z+1 jet dominated phase space, the discrepancy with Pythia is less evident.
Event shapes for \(p_T(Z) > 150 \) GeV

- The requirement on \(p_T(Z) \) shifts the distribution towards lower values.

- The selection enhances \(Z+1 \) jet topologies.
High hadronic activity

- We checked the azimuthal separation between the Z and the jets and between jets in events with high hadronic activity (at least 3 jets)
 - The dominant configuration is Z and a sub-leading jet balancing together the leading jet
 - The ME+PS descriptions are in good agreement with data
High hadronic activity

- We checked the azimuthal separation between the Z and the jets and between jets in events with high hadronic activity (at least 3 jets)
 - The dominant configuration is Z and a sub-leading jet balancing together the leading jet
 - The ME+PS descriptions are in good agreement with data
High hadronic activity and Z boost

- The most extreme kinematic region we have explored is the one with at least three jets and a highly boosted Z.

- It is particularly interesting to notice that in this regime the correlation between the jets becomes flat.

CMS Preliminary, √s=7 TeV, L=5.0 fb⁻¹

<table>
<thead>
<tr>
<th>Z/γ → ℓ⁺ℓ⁻, p_T>150 GeV, N_{jets} ≥ 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
</tr>
<tr>
<td>MadGraph</td>
</tr>
<tr>
<td>Sherpa</td>
</tr>
<tr>
<td>Pythia6 (Z2)</td>
</tr>
</tbody>
</table>

1/σ dσ/dφ

- $\Delta φ_{ZJ_1}$
- $\Delta φ_{ZJ_2}$
- $\Delta φ_{J_1J_2}$

CMS Preliminary, √s=7 TeV, L=5.0 fb⁻¹

<table>
<thead>
<tr>
<th>Z/γ → ℓ⁺ℓ⁻, p_T>150 GeV, N_{jets} ≥ 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
</tr>
<tr>
<td>MadGraph</td>
</tr>
<tr>
<td>Sherpa</td>
</tr>
<tr>
<td>Pythia6 (Z2)</td>
</tr>
</tbody>
</table>

1/σ dσ/dφ

- $\Delta φ_{J_1J_2}$

10^2

$\Delta φ_{ZJ}$

x300

$\Delta φ_{ZJ}$

x10

$\Delta φ_{J_1J_2}$

x100

$\Delta φ_{J_1J_2}$

x10
High hadronic activity and Z boost

- The most extreme kinematic region we have explored is the one with at least three jets and a highly boosted Z.
- It is particularly interesting to notice that in this regime the correlation between the jets becomes flat.
Conclusion

- Results from CMS in W/Z+jets have been presented
 - Jet rates and related observables in 2010 data sample at 7 TeV (36 pb^{-1})
 - Azimuthal correlation and event shapes in Z+jets at 7 TeV (5 fb^{-1})
- These observables probe perturbative QCD in an unprecedented energy regime
 - Excellent agreement with predictions from matched Matrix Element + Parton Shower
Backup
Systematic uncertainties

- The main systematic uncertainty on the jet counting is the jet energy scale
Selection strategy

- Online selection:
 - Single electron and single muon triggers
- Reconstructed lepton selection
 - Events with at least one electron/muon with p_T above 20 GeV are selected
 - If a second, looser ($p_T > 15$ GeV), same species lepton is found, it is assigned to the Z sample, otherwise to the W sample
- Lepton identification
 - Isolation requirements for both muons and electron
- Z selection: two opposite charge lepton with invariant mass between 60 and 120 GeV
- W selection: transverse mass cut at 20 GeV
High hadronic activity and Z boost

- The most extreme kinematic region we have explored is the one with at least three jets and a highly boosted Z (pt > 150 GeV)

- It is particularly interesting to notice that in this regime the correlation between the jets becomes flat
Hard QCD at LHC

- Hard QCD processes are important for two broad classes of reasons
 - They represent a ubiquitous source of background for virtually any signal (both SM and searches) at a hadron collider
 - They provide a tool to test the predictions of perturbative QCD
 - The current understanding of our detectors allows both ATLAS and CMS collaborations to do precision QCD measurements
- 4 T solenoid
- Pixel + SiStrip tracker
- Scintillating crystals (PbWO₄)
 electromagnetic calorimeter
- Brass/plastic hadron calorimeter (non-compensating)
- Muon spectrometer in the magnet iron return yoke
Jet reconstruction

- Jets are reconstructed with the anti-kt algorithm, with radius of 0.5 or 0.7
- 3 available algorithms for jet reconstruction
 - Calo-Jets: use only the calorimeter towers
 - Jet-Plus-Track Jets: improve the calorimeter jets using the tracks in the jet cone
 - Particle-Flow jets: uses particle flow candidates as input to the clustering algorithm

 ▪ **Particle flow reconstruction:**
 ▪ global event reconstruction
 ▪ Identifies muons, electrons, taus, photons, charged hadron, neutral hadrons
 ▪ Combines the information from all detectors
Jet reconstruction

- Jets are reconstructed with the anti-kt algorithm, with radius of 0.5 or 0.7

- 3 available algorithms for jet reconstruction
 - Calo-Jets: use only the calorimeter towers
 - Jet-Plus-Track Jets: improve the calorimeter jets using the tracks in the jet cone
 - Particle-Flow jets: uses particle flow candidates as input to the clustering algorithm

- Particle flow reconstruction:
 - global event reconstruction
 - Identifies muons, electrons, taus, photons, charged hadron, neutral hadrons
 - Combines the information from all detectors
Jet energy scale

- We use a multi-step procedure to correct the energy of our jets

\[p^\text{cor}_\mu = C \cdot p^\text{raw}_\mu. \]

\[C = C_{\text{offset}}(p^\text{raw}_T) \cdot C_{\text{MC}}(p^\gamma_T, \eta) \cdot C_{\text{rel}}(\eta) \cdot C_{\text{abs}}(p^\gamma_T) \]

- \(C_{\text{offset}} \) accounts for detector noise and pile-up

- The method uses correction factors extracted from the full simulation of CMS, \(C_{\text{MC}} \)

- Residual differences with respect to data are accounted for as further scaling factors
 - \(C_{\text{rel}} \) accounts for non-uniformity in eta. It is obtained applying on data and MC the di-jet balance method
 - \(C_{\text{abs}} \) accounts for residual absolute scale differences between data and MC. It is obtained applying on data and MC the \(\gamma + \text{jet} \) and \(Z + \text{jet} \) pT balancing

- In this MC + residual method effects like the presence of additional radiation spoiling dijet or \(\gamma + \text{jet} \) and \(Z + \text{jet} \) balancing enter only at second order
Jet energy scale

- Total systematic uncertainty on the energy scale for particle-flow jets
- The main sources of uncertainty are:
 - The photon energy scale, known at 1%
 - The relative response across detector regions
 - Pile-up effects
 - Extrapolations down to 0 for the additional activity in the balance methods
 - Dependency on jet flavor in the MC used
Jet energy resolution

- Determined with di-jet and γ+jet pT balance
- Plots show two example regions in η
- Resolution is of the order of 10% around 50 GeV
Signal extraction

- Main backgrounds
 - QCD dijets with fake leptons
 - Ttbar, especially for the W
 - Z+jets for the W
- For Z (W) the signal is extracted with a fit to the dilepton invariant mass (transverse mass)
 - In the W channel, due to the presence of real W from ttbar a b-tagging estimator has been added to the fit
- Background shapes
 - From inverted identification criteria for QCD
 - From data ttbar sample for ttbar
- Efficiency correction
 - Estimated with tag and probe methods
CMS measured the associated production of $Z + b$-jets

- Z selection plus high purity b-tagging
- Main systematics: JES, b-tagging efficiency and mistag rate
- The ratio between the $Z + b$ jets and $Z +$ any jet has been measured for both electron and muon decay channels

| Sample | $\mathcal{R}(Z \rightarrow ee)\%$, $p_T^e > 25$ GeV, $|\eta^e| < 2.5$ | $\mathcal{R}(Z \rightarrow \mu\mu)\%$, $p_T^\mu > 20$ GeV, $|\eta^\mu| < 2.1$ |
|--------------|---|---|
| Data HE | 4.3 ± 0.6 (stat) ± 1.1 (syst) | 5.1 ± 0.6 (stat) ± 1.3 (syst) |
| Data HP | 5.4 ± 1.0 (stat) ± 1.2 (syst) | 4.6 ± 0.8 (stat) ± 1.1 (syst) |
| MADGRAPH | 5.1 ± 0.2 (stat) ± 0.2 (syst) ± 0.6 (theory) | 5.3 ± 0.1 (stat) ± 0.2 (syst) ± 0.6 (theory) |
| MCFM | 4.3 ± 0.5 (theory) | 4.7 ± 0.5 (theory) |