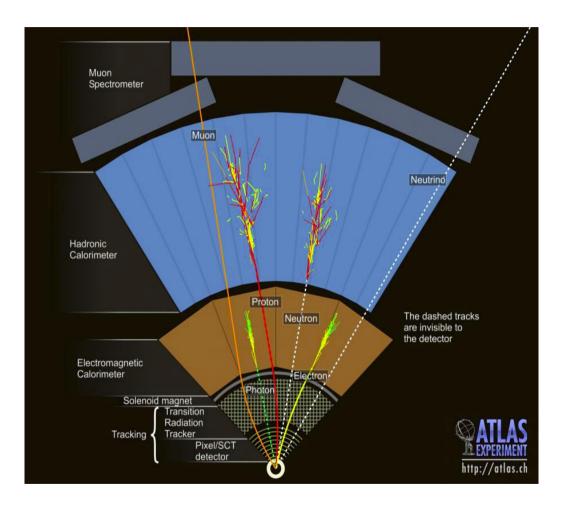

Searches for long-lived particles with the ATLAS detector

Andy Haas New York University

on behalf of the ATLAS collaboration

ICHEP 2012 Melbourne, Australia

July 4 - 11, 2012



NEW YORK UNIVERSITY

Introduction

Many signatures of long-lived particles!

- Decays in inner tracker / outer tracker / calorimeter / muon system
- Slow (timing in calorimeter / muon)
- Large dE/dx and ionization (pixel/TRT)
- Stopping / decaying out-of-time

Require special triggers, data processing, reconstruction algorithms, background estimates, and simulations!

Recent Searches (2011 data)

- Displaced vertex in inner tracker (+muon) arxiv/1109.2242
- Kinked / disappearing track in outer tracker

Long-lived particles \rightarrow lepton-jets in muon system

Slow, highly ionizing particles

Very-highly-charged particles (monopoles)

• Stopped particles decaying to jets in the calorimeter in empty bunch crossings arxiv/1201.5595

Kinked / disappearing track

- Nearly mass-degenerate chargino and neutralino
 - Often realized in AMSB
- X₁[±] Long-lived chargino X_1^0 LSP escapes detector: E₊^{miss} π± Small p_T, perhaps 100 MeV Look for high-pt track missing hits in the outer tracking layer $\widetilde{\chi}_1^{\pm}$ decaying into $\widetilde{\chi}_1^{0} + \pi^{\pm}$ high- p_{T} charged particle interacting with TRT material low- p_{T} charged particle scattered in materials resulting in badly measured track p_T reconstructed track true particle track Pixel SCT TRT

Andy Haas – ICHEP2012

Kinked / disappearing track

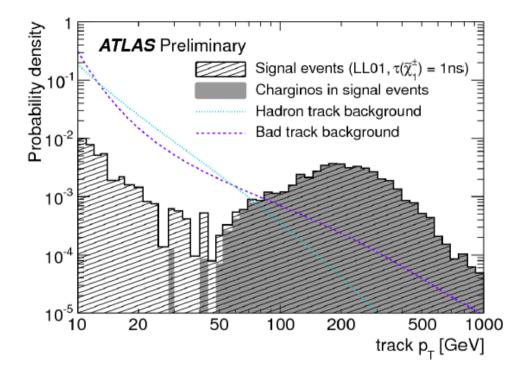
Tracks

Trigger:

1 jet with pt>75 GeV MET > 55 GeV

- Offline:
 - 3 jets with pt>130,60,60 GeV MET>130 GeV Lepton veto

10⁵ data **ATLAS** Preliminary Background MC Signal events (LL01, $\tau(\tilde{\chi}_{\cdot}^{\pm})=1$ ns) 10^{4} Charginos in signal events (decay radius<863mm) 10^{3} 10^{2} $Ldt = 4.7 \text{ fb}^{-1}$ vs = 7TeV 10 10⁻¹ 25 5 10 15 20 30 N^{outer}


Track pt>10 GeV

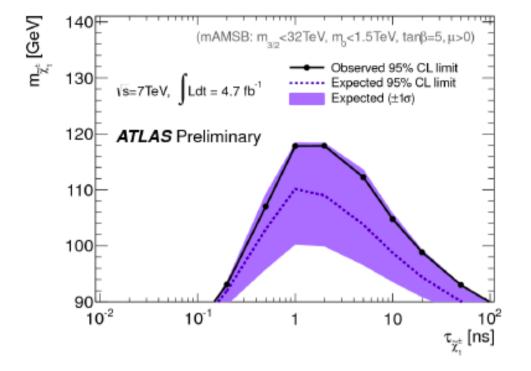
Isolated from other tracks (dR>0.1)

<5 hits in the outer TRT layer

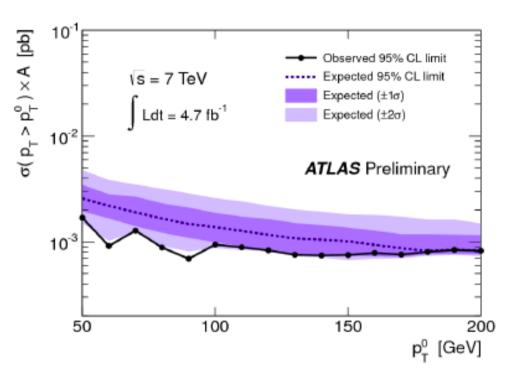
35

Kinked / disappearing track: pT shapes

Tracks / 1GeV ATLAS Preliminary vs=7TeV, Ldt = 4.7 fb⁻¹ 10 Data ···· Fit result 10 10⁻² 20 50 100 200 500 1000 10 track p_{τ} [GeV]


The 3 templates are fit to data:

- The two background templates are fit for p_τ > 10 GeV
- The signal template is included in the fit for p_T > 50 GeV


data and background fit best fit has zero contribution from signal template

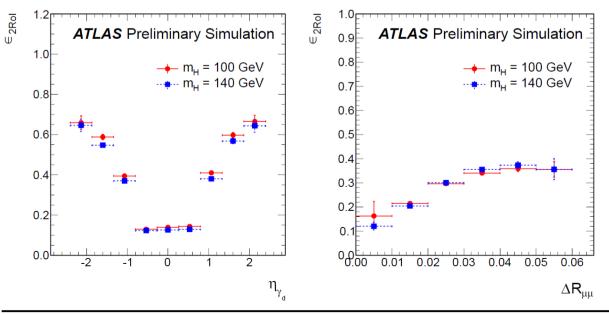
304 events in 4.7/fb of 2011 data

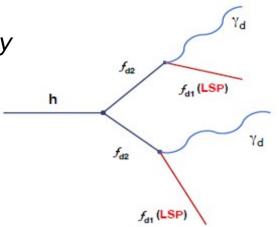
Kinked / disappearing track: Limits

Limit for the mass Previous LEP2 limit: $X_1^{\pm} > 92 \text{ GeV}$ (for any lifetime)

limit on production of truncated tracks ATLAS: $\chi_1^+ > 118 \text{ GeV} (@1 \text{ ns})$

primary uncertainty is the theoretical cross section (27%) backgrounds are data driven and so have very small uncertainty


ATLAS-CONF-2012-034


Long-lived particles \rightarrow lepton-jets in muon system

• "Lepton-jet":

collimated group of electrons, muons, pions from decay to a new, light hidden-sector particles ("dark-photon")

- Trigger: 3 muons in MS, pt>6 GeV
 - Efficiency ~ 30% (relative to offline)
 - Need a dark photon to give <u>2 L1 trigger muon regions</u>
 - Compare to J/ψ data for systematic

Higgs mass	m_{fd2}	m_{fd1}	γ_d mass (GeV)	сτ
(GeV)	(GeV)	(GeV)	(GeV)	(mm)
100.	5.0	2.0	0.4	47
140.	5.0	2.0	0.4	36

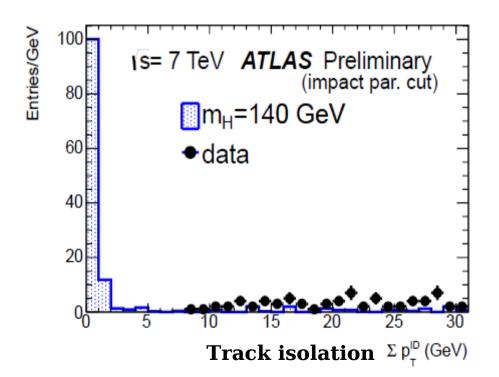
For dark-photon mass of 0.4 GeV: BR(e,mu,pi)=0.45,0.45,0.1 ~20% have two muon-jets

1.94 /fb of 2011 7 TeV pp data used

ATLAS-CONF-2012-112 (to appear soon...)

Long-lived particles \rightarrow lepton-jets in muon system

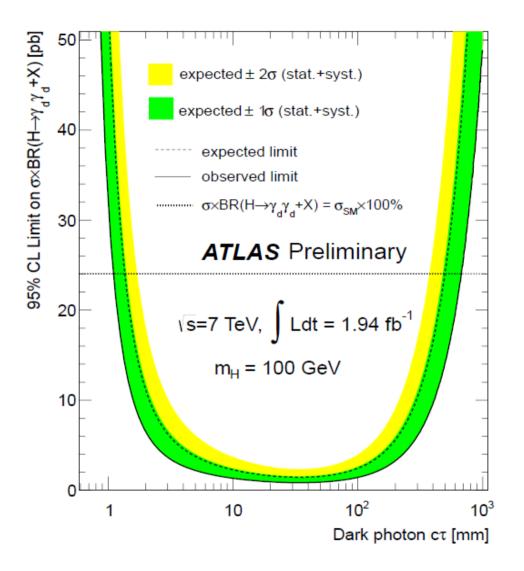
- Muon jet reconstruction
 - Cluster muons using dR=0.2 cone
 - Require ≥2 OS muons per muon-jet
- Require ≥2 muon-jets


Calorimeter isolation in hollow cone 0.2<dR<0.4 around muon-jet < 5 GeV

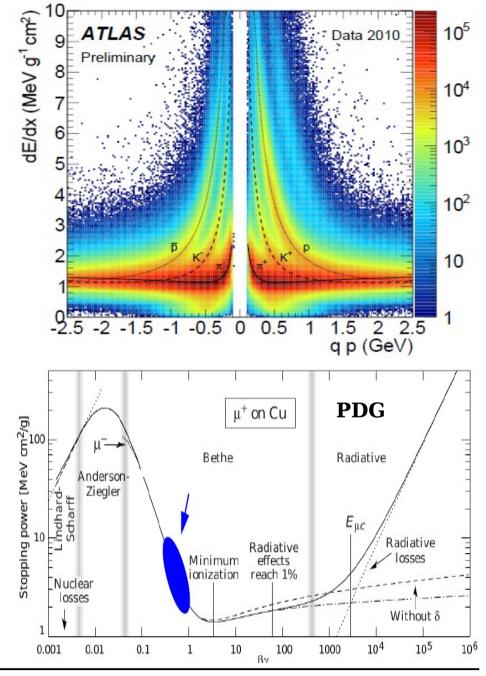
Scalar sum pt of tracks in dR<0.4 cone around each muon-jet < 3 GeV

dphi>2 for two muon-jet

d0<200mm and |z0|<270mm w.r.t. PV (remove cosmic background)


sample	2MJ	Final Selection	
Cosmics	3.0±2.1	$0^{+1.64}_{-0}$	
multi – jet		$0.059 \pm 0.015^{+0.66}_{-0.059}$	
Total background		$0.059^{+1.64}_{-0.015}{}^{+0.66}_{-0.015}$	
$m_{Higgs} = 100 \text{ GeV}$	$135 \pm 11^{+29}_{-21}$	$75\pm9^{+16}_{-12}$	
$m_{Higgs} = 140 \text{ GeV}$	$90\pm9^{+17}_{-13}$	$48\pm7^{+9}_{-7}$	
DATA	871	0	

 Set limits on signal vs. dark-photon decay length

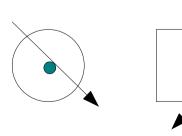

(weak dependence on m_{H})

Exclude γ_d proper decay lengths ~1 - 500 mm for 100% BR(H $\rightarrow \gamma_d \gamma_d$)

Massive, slow, highly-ionizing tracks

- Look for high-pt tracks
- Measure velocity of track using
 - dE/dx in pixel detector (invert Bethe-Block)
 - dE/dx in TRT and calorimeters not used yet
 - Timing in calorimeter and muon systems
- Main background: mis-measured timing or dE/dx
 - Estimated using data in control regions with low S/B (lower pt cut or on Z peak)

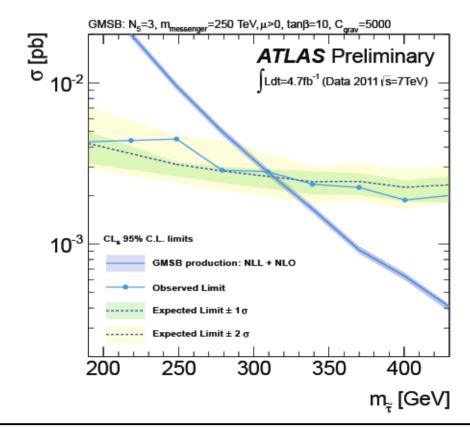
Massive, slow, highly-ionizing tracks

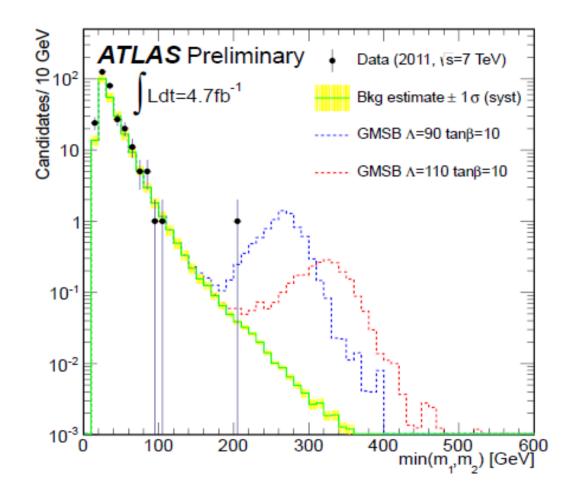

- Three searches:
 - 1) optimized for colorless particles (stau)
 - charged through whole detector \rightarrow inner track + calorimeter + muon
 - 2) motivated by colored particles (R-hadrons)
 - may become neutral in calorimeter \rightarrow inner track + calorimeter
 - 3) motivated by shorter lifetime particles
 - may decay before leaving tracker \rightarrow short pixel+SCT track only

Triggers:

- Single muon, pT>18 GeV
 - Not sensitive to very slow particles (later bunch crossing)
 - ~90% efficient for staus
- MET > 60-70 GeV (EM-scale)
 - Sensitive to very slow particles
 - 15-40% efficient for R-hadrons

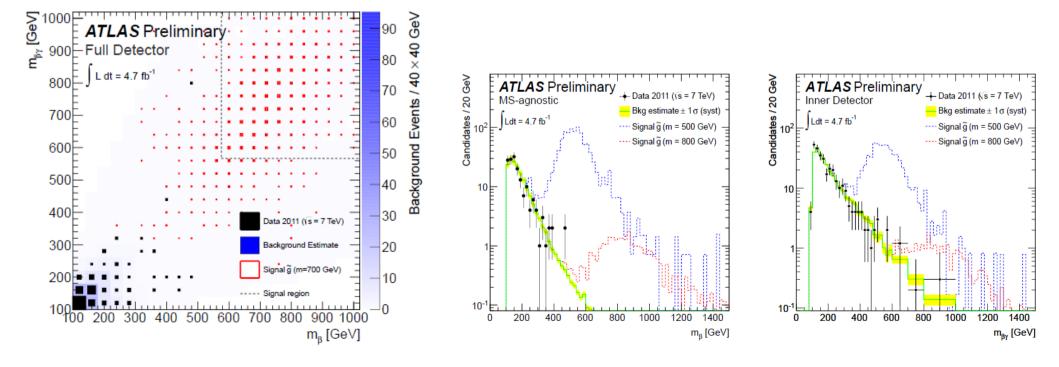
Cosmic rejection:


- Cut on distance of track to PV in 2D-IP and z
- Reject back-to-back tracks in phi or eta



Slepton (stau) search

- Two-track channel
 - Looser track selection
 - pT>50 GeV
 - Anti-Z-mass cut (+-10 GeV)
 - Cut on velocity

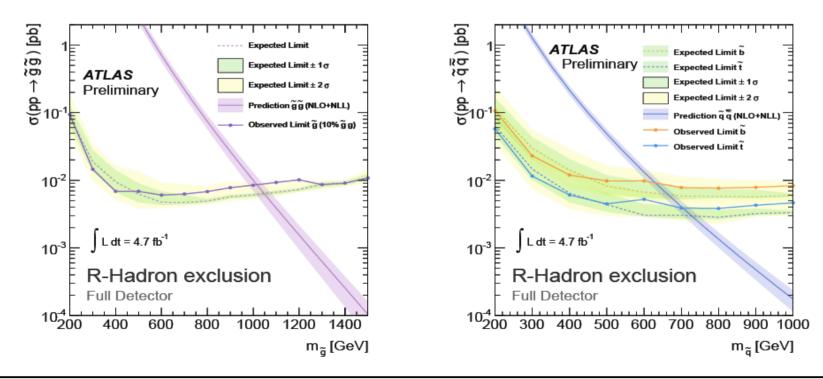

m(stau)>310 GeV (tanB in 5-20) pair-produced stable leptons > 297 GeV

Also interpreted in GMSB parameter space

ATLAS-CONF-2012-075

R-hadron search

- Only a single-track selection is used, since efficiency is smaller
 - Checks are made for double candidates
- Track pT>140 GeV (50 GeV for short-track-only analysis)
- Isolation from jets (ET>40 GeV, dR<0.3)
 Isolation from tracks (pT>10 GeV, dR<0.25)
 - pT>1 GeV, dR<0.25 for short-track-only analysis

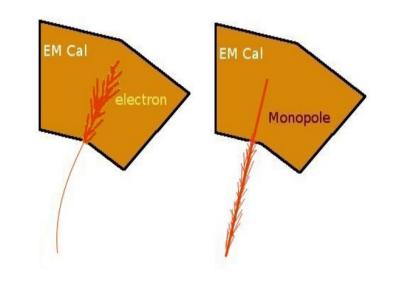


R-hadron search results

- Cuts on velocity from pixel / calorimeter / muon system
- Limits in the 3 analyses (95% C.L.):

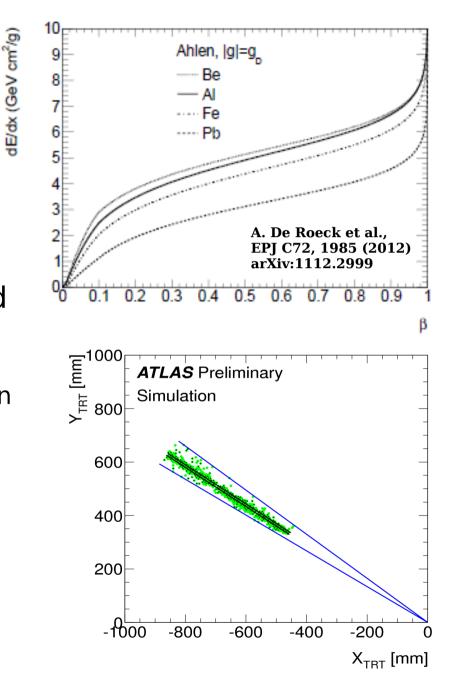
ATLAS-CONF-2012-075

	gluino	stop	sbottom
Full detector	985	683	612
Track+calorimeter	989	657	618
Track only	940	604	576



Andy Haas – ICHEP2012

- Pair-produced, heavy, highly charged, anomalous bending in B-field
 - Full monopole detector simulation
- Large energy cluster in EM calorimeter
 - Many high-ionization hits in the TRT along road from primary vertex to EM energy cluster
- Trigger on ET>60 GeV EM calorimeter cluster
 - Working on special triggers based on TRT high-threshold hits


ET>65 GeV *central* EM calorimeter cluster offline

$$\frac{ge}{\hbar c} = \frac{1}{2} \Rightarrow \frac{g}{e} = \frac{1}{2\alpha_e} \approx 68.5$$

ATLAS-CONF-2012-062

- Very large ionization from large electromagnetic coupling
 - High threshold hit in TRT has >6000 eV in straw
 - >200 eV for low-threshold
- Large number of δ -rays \rightarrow wide road
 - $|\Delta \phi| < 0.05$ radians for pre-selection
 - Optimized road defined for final selection
- Require at least 20 high-threshold TRT hits in the track road
 - 20% of the TRT hits must also be high-threshold

Ē

0.8

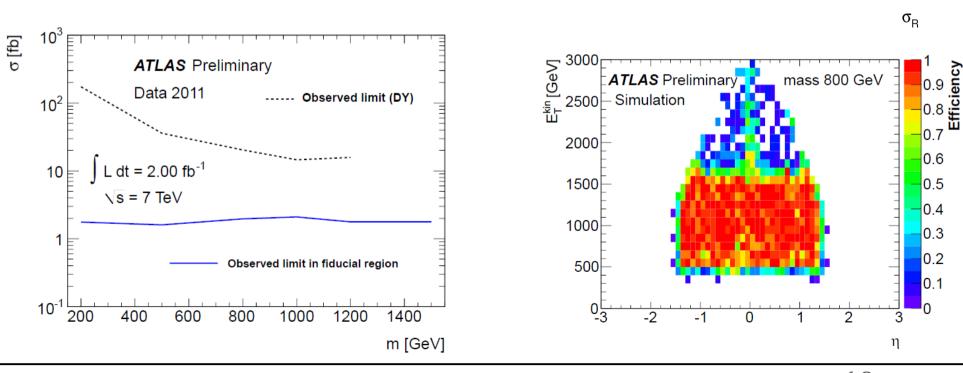
0.6

ስ

ATLAS Preliminary

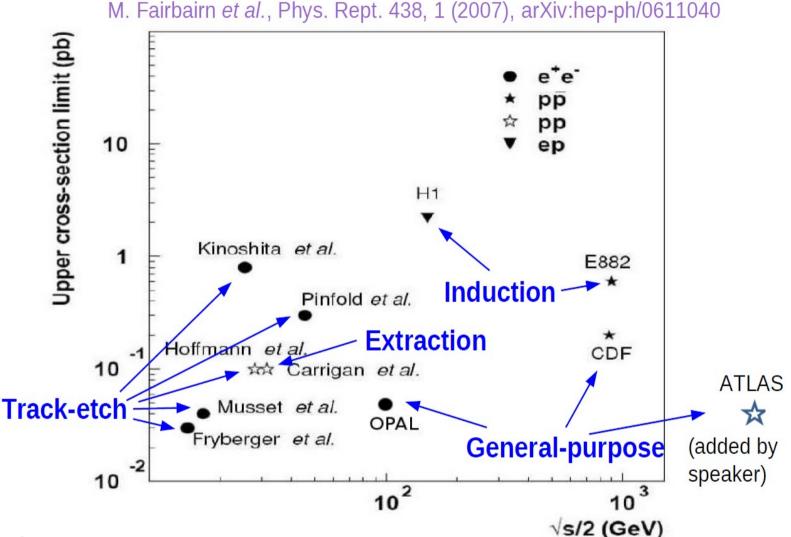
 $L dt = 2.00 \text{ fb}^{-1}$

Data 2011 Monopole MC


0.01

0.02

0.03


 $0.4 \int \sqrt{s} = 7 \text{ TeV}$

- Expect *narrower* EM shower for monopoles compared to e / γ
 - Much less Bremsstrahlung and pair-production
- Data-driven ABCD background:
 0.011 ± 0.007 events
- No event observed in signal region

С

0.04

<u>Disclaimer:</u>

Valid only in a given mass range for a benchmark model of monopole production. Monopole with charge equal to the Dirac charge.

First constraints on magnetic monopole production at the LHC !

Conclusions

No hints for signal yet...

We'll continue to look at new signatures and with more data in the years to come!

- Displaced vertex in inner tracker (+muon)
- Kinked / disappearing track in outer tracker

Long-lived particles → lepton-jets in muon system

Slow, highly ionizing particles

- Very-highly-charged particles (monopoles)
- Stopped particles decaying to jets in the calorimeter in empty bunch crossings

Backup

Disappearing track: background track pT shapes

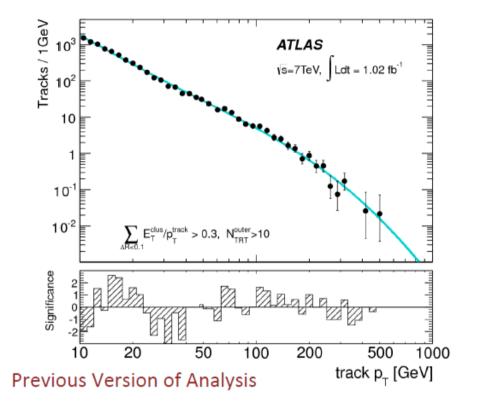
Fracks / 1GeV

10

10

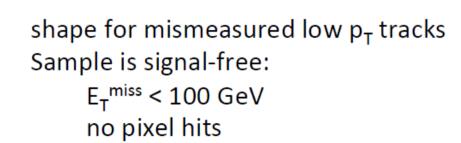
10

10⁻²


Significance

10

 $\sum_{AB < 0} E_T^{clus} / p_T^{b}$


20

Previous Version of Analysis

shape for high p_T tracks that interact Sample is signal-free:

 $N_{TRT}^{outer} > 10.$

50

< 0.3, no pixel hits

100

200

ATLAS

vs=7TeV, Ldt = 1.02 fb⁻¹

1000

500

track p₋ [GeV]