Searches for supersymmetry in events with photons or tau leptons and missing transverse momentum with the ATLAS detector

Steffen Schaepe
for the ATLAS collaboration

ICHEP 2012, Melbourne, July 5th 2012
Gauge Mediated Supersymmetry Breaking (GMSB) is one possible theory to introduce SUSY breaking

- Breaking happens at a high scale in a hidden sector. It is communicated to the weak scale MSSM by messenger fields
- Messengers couple to SM fields via standard gauge interactions
- In minimal version: six free parameters (two for Higgs sector)
 - In the searches presented here Λ - setting the sparticle mass scale - and $\tan \beta$ - Higgs VEV ratio - are varied
 - Other parameters fixed to ensure one particular signature
• \(\tilde{G} \) (Gravitino) is always lightest SUSY particle (LSP)
• \(\tilde{G} \) has eV mass, is collider-stable and non-interacting \(\Rightarrow \not\! E_T \)
• NLSP\(\rightarrow \tilde{G} \) decay at the end of every decay chain

• NLSP determines search signatures
• Only short lived NLSP considered here
• Two NLSP possibilities studied:
 • \(\tilde{\chi}^0 \rightarrow \gamma \tilde{G} \), one photon in every decay chain
 • \(\tilde{\tau} \rightarrow \tau \tilde{G} \), one tau in every decay chain

• Production modes depend on squark and gluino masses
• Strong production for lower, electroweak production for higher values of \(\Lambda \)
• Two searches based on 2.05 fb$^{-1}$ of data recorded in 2011
• Target intermediate scale GMSB model with $\tilde{\tau}$ NLSP and production of colored sparticles
• Trigger on one hard jet (130 GeV) and large missing transverse energy E_T (130 GeV)
• Select events with either one or two reconstructed taus with $p_T > 20$ GeV and no light leptons
• Separation between direction of jets and E_T used to suppress missing energy due to instrumental effects
• Use $m_{\text{eff}} = \left(\sum_{\text{selected taus/jets}} p_T + E_T \right)$, E_T/m_{eff} and transverse mass m_T^τ as main discriminating variables
• Background estimates based on extrapolations from control regions into signal region
• Separate hadronic tau decays from jets using multivariate techniques
• Generally smaller track multiplicity and stronger collimation than QCD jets
• Require ≥ 1 “tight” tau for single tau and ≥ 2 “loose” taus for di tau selection

• Individual cuts to suppress single background channels
• Main selection cut on m_{eff} at 600 GeV (700 GeV) for the one tau (di tau) selection
• Multijet background estimated by measuring probability of jets to fake taus in control region

• True tau background evaluated from control region with $m_\tau^T < 70 \text{ GeV}$

• ...separating top from W using a multivariate discriminant

• Additional influence of fake taus studied in control region with $70 \text{ GeV} < m_\tau^T < 110 \text{ GeV}$ or $m_{\text{eff}} < 600 \text{ GeV}$

• Extrapolate to signal region with $110 \text{ GeV} < m_\tau^T$

• Dominant uncertainties from jet energy uncertainties (besides extrapolation, normalization and signal cross section)

<table>
<thead>
<tr>
<th></th>
<th>Top</th>
<th>$W + \text{jets}$</th>
<th>$Z + \text{jets}$</th>
<th>Multijet</th>
<th>$\sum \text{SM}$</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5.6 ± 1.4</td>
<td>4.7 ± 1.5</td>
<td>2.4 ± 0.7</td>
<td>0.5 ± 0.6</td>
<td>13.2 ± 4.2</td>
<td>11</td>
</tr>
</tbody>
</table>
- Multijet background expected to contribute < 0.01 events by extrapolating estimate in sidebands to control region
- Contribution from $Z \rightarrow \tau \tau$ background estimated from simulation
- W and t estimated by extrapolating from dedicated control region to signal region
- Similar uncertainties as in the one tau search

<table>
<thead>
<tr>
<th>$\sum \text{SM}$</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5.3 \pm 1.3\text{(stat)} \pm 2.2\text{(syst)}$</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Top</th>
<th>$W + \text{jets}$</th>
<th>$Z + \text{jets}$</th>
<th>DiBosons</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1.57 \pm 0.42 \pm 0.75$</td>
<td>$2.5 \pm 1.0 \pm 1.2$</td>
<td>$1.08 \pm 0.70 \pm 0.63$</td>
<td>$0.14 \pm 0.05 \pm 0.03$</td>
</tr>
</tbody>
</table>
Upper limits on non-SM events of 8.5 (7) are set at 95% CL by single (di) tau search

Limit interpreted as exclusion contour in $(\Lambda, \tan \beta)$ plane

Translates into limit on gluino mass of $m_{\tilde{g}} > 920(990)$ GeV for $\tan \beta > 20$
• Search uses 4.8 fb^{-1} of data recorded in 2011
• Target two classes of GMSB models
 • High-scale colored sparticle production with bino NLSP
 • Intermediate-scale gaugino production with bino-like NLSP
• Use diphoton trigger to select events with two photon candidates
• Require two 50 GeV photons and E_T
• Special care taken to reduce the amount of photons faked by electrons
• Use E_T, $H_T := \sum_{\text{photons/jets/leptons}} p_T$ and the isolation between E_T and photons $\Delta \phi_{\text{min}}(\gamma, E_T)$ as main signal selection variables
Photon Searches

Photons

- Identification by shower shape in calorimeter, exploiting the high granularity of the ATLAS electromagnetic calorimeter
- ATLAS TRT capability allows reconstructing converted photons very efficiently
- Photon selection depends on conversion type (0/1/2 tracks)
 - Large suppression of fakes by requiring one-track conversions to have no hits in the Pixel detector
 - Reconstructed electrons always precede overlapping photons
 - Strongly improved suppression of electron fakes offers optimized control over backgrounds compared to former analyses
• Three different signal regions (SR) constructed
• SR A and B for colored production, SR C for electroweak production

<table>
<thead>
<tr>
<th></th>
<th>SR A</th>
<th>SR B</th>
<th>SR C</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_T >$</td>
<td>200 GeV</td>
<td>100 GeV</td>
<td>125 GeV</td>
</tr>
<tr>
<td>$H_T >$</td>
<td>600 GeV</td>
<td>1100 GeV</td>
<td>-</td>
</tr>
<tr>
<td>$\Delta \phi_{min}(\gamma, E_T^\text{miss}) >$</td>
<td>0.5</td>
<td>-</td>
<td>0.5</td>
</tr>
</tbody>
</table>
• Three classes of backgrounds

 QCD containing all backgrounds with jets being reconstructed as photons and fake \not{E}_T

 Electroweak containing all backgrounds with true \not{E}_T from neutrinos and fake photons from electrons or jets

 Irreducible containing two true photons and \not{E}_T from neutrinos, dominantly $W(\rightarrow \ell \nu) + \gamma \gamma$ and $Z(\rightarrow \bar{\nu} \nu) + \gamma \gamma$

• QCD estimated by constructing three templates from events that pass “loose” identification but fail “tight” and applying H_T and $\Delta \phi$ cuts according to each signal region

• Expected number of events obtained by normalizing templates to data in region $\not{E}_T < 20 \text{ GeV}$
• Electroweak background estimated from events containing one photon and one electron passing signal cuts
• Prediction has to be scaled by electron to photon fake probability measured in $Z \rightarrow ee$ events
• Irreducible background estimated from Monte Carlo simulation

• Systematic uncertainties from alternative background estimate

<table>
<thead>
<tr>
<th></th>
<th>SR A</th>
<th>SR B</th>
<th>SR C</th>
</tr>
</thead>
<tbody>
<tr>
<td>QCD</td>
<td>$0.07 \pm 0.00 \pm 0.07$</td>
<td>$0.27 \pm 0.00 \pm 0.27$</td>
<td>$0.85 \pm 0.30 \pm 0.71$</td>
</tr>
<tr>
<td>EW</td>
<td>$0.03 \pm 0.03 \pm 0.01$</td>
<td>$0.09 \pm 0.05 \pm 0.02$</td>
<td>$0.80 \pm 0.16 \pm 0.22$</td>
</tr>
<tr>
<td>$W(\rightarrow \ell\nu) + \gamma\gamma$</td>
<td>0.0</td>
<td>0.0</td>
<td>$0.18 \pm 0.13 \pm 0.18$</td>
</tr>
<tr>
<td>$Z(\rightarrow \bar{\nu}\nu) + \gamma\gamma$</td>
<td>0.0</td>
<td>0.0</td>
<td>$0.27 \pm 0.09 \pm 0.04$</td>
</tr>
<tr>
<td>Total</td>
<td>$0.10 \pm 0.03 \pm 0.07$</td>
<td>$0.36 \pm 0.05 \pm 0.27$</td>
<td>$2.11 \pm 0.37 \pm 0.77$</td>
</tr>
<tr>
<td>Observed</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>
• Minimal GMSB scenario “SPS8” with full particle spectrum
• Λ is the only free parameter determining mass scales
• A lower limit of $203 \, \text{TeV}$ is set on the SPS8 breaking scale Λ
• \ldots using signal region C
• In studied range of Λ dominantly direct EW gaugino production
• Corresponding limits on $m_{\tilde{\chi}_0^\pm} \gtrsim 290 \, \text{GeV}$ and $m_{\tilde{\chi}_1^\pm} \gtrsim 560 \, \text{GeV}$.

ATLAS Preliminary

SPS8: $M_{\text{mess}}=2\Lambda$, $N=1$, $\tan\beta=15$, $c\tau_{\text{NLO}}<0.1\,\text{mm}$

$\int Ldt = 4.8 \, \text{fb}^{-1}$, $\sqrt{s} = 7 \, \text{TeV}$
GGM (General Gauge Mediation) simplified model with Bino like $\tilde{\chi}_0^1$

- Only gluino production
- $m_\tilde{g}$ and $m_\tilde{\chi}_0^1$ as free parameters
- All other masses decoupled

A lower limit on $m_\tilde{g}$ of 1.07 TeV is determined for $m_\tilde{\chi}_0^1 > 50$ GeV

... using signal regions A and B depending on the neutralino masses
Summary

- Gauge mediation is an attractive theory of SUSY breaking
- Special properties lead to particular interesting signatures
- Photons and taus can exploit GMSB signatures for sensitive low background searches for SUSY
- Stringent limits on gauge mediated SUSY production set

References

One tau search arXiv:1204.3852, accepted for publication by PLB
Two tau search arXiv:1203.6580, accepted for publication by PLB
Diphoton search ATLAS-CONF-2012-072
Back Up
\(p_T^{\tau_1} = 66 \text{ GeV} \)
\(p_T^{\tau_2} = 48 \text{ GeV} \)
\(p_T^{\text{jet}_1} = 214 \text{ GeV} \)
\(p_T^{\text{jet}_2} = 177 \text{ GeV} \)
\(E_T = 203 \text{ GeV} \)
1 tau Selection

- ≥ 1 “tight” tau
- $\frac{E_T}{m_{\text{eff}}} > 0.25$
- $m_T > 110$ GeV
- $m_{\text{eff}} > 600$ GeV

2 tau Selection

- ≥ 2 “loose” taus
- $m_T^1 + m_T^2 > 80$ GeV
- $m_{\text{eff}} > 700$ GeV
• Identification by shower shape in calorimeter, exploiting the high granularity of the ATLAS electromagnetic calorimeter
• ATLAS TRT capabilities to reconstruct and identify photon conversions leads to three classes of photons
 • Unconverted photons that have no tracks pointing to the photon cluster
 • Single track conversions that have one electron track that does not have hits in the innermost pixel detector
 • Two tracks conversions that have two electron tracks and a conversion vertex consistent with the decay of a zero mass particle
• Reconstructed electrons always precede overlapping photons
• Overall achieve 55% fake rejection at 70% signal efficiency
• Strongly improved suppression of electron fakes offers optimized control over backgrounds
- $\tan \beta = 2$ and $c\tau_{NLSP} < 0.1 \text{ mm}$
- $m_{\tilde{q}}$ and $m_{\tilde{\chi}^0}$ as free parameters
- All \tilde{d} and \tilde{u}_L masses degenerate, \tilde{u}_R decoupled
- All other masses decoupled
- A lower limit on $m_{\tilde{q}}$ of 0.91 TeV is determined for $m_{\tilde{\chi}^0} > 50 \text{ GeV}$