Search for FCNC in Top Pair Events in pp Collisions

Yuan CHAO,

(National Taiwan University, Taipei, Taiwan)

On behalf of the CMS collaboration

ICHEP 2012 Melbourne, Australia 2012/07/04-11

Motivation

• Top quark decay channels:

Charged Current (CC)

Flavor-Changing
Neutral- Current (FCNC)

- Normal t → bW is tree-process
- FCNC t → cZ penguin-process (loop diagram)
 - Standard Model: FCNC suppressed by O(10⁻¹⁴)
 - Could be enhanced through new physics at the loop level
 - Some theoretical models can give up to O(10⁻⁴):
 - R-parity violated SUSY Phys. Lett. B502 (2001) 115-124
 - TopColor assistant technicolor models Phys. Rev. D68 (2003) 015002

Motivation (cont.)

• Top quark decay channels:

Charged Current (CC)

Flavor-Changing Neutral- Current (FCNC)

- Recently from Tevatron experiment:
 - CDF: Br($t \rightarrow cZ$) < 3.7 % at 95% C.L.

Phy. Rev. Lett. 101 (2008) 192002

• DØ: Br(t → cZ) < 3.2 % at 95% C.L.

Phy. Lett. B 701 (2011) 313

Results from Atlas: (previous speaker)

Data & Analysis Strategy

- Data recorded with the CMS detector
 - Full data set collected in 2011:
 ~4.6/fb at 7 TeV
- One of the top pair goes to the FCNC decay channel
- Event signature:

$$tt \rightarrow (W \rightarrow I nu) + (Z \rightarrow II) + jj$$

- Full leptonic decays of W & Z (tri-lepton final state)
 - → very clean background
- Dominant backgrounds: tt, Drell-Yan, WZ, ZZ
- Suppress non-tibar bkg. with b-tagging requirement
- Two approaches
 - Without b-tag → similar to previous studies
 - With b-tag → even cleaner background

Event Selection

- Common selection for both approaches
 - Basic Vertex selection
 - High Level Trigger (HLT): di-lepton paths
 - Three leptons with identification and isolation requirements
 - Min. pT > 20 GeV,
 - Pseudo rapidity: elec. $|\eta| < 2.5$, muon $|\eta| < 2.4$
 - Z-boson selection: best within the mass window 60-120 GeV
 - W from isolated lepton plus neutrino
 - Missing ET > 40 GeV and veto against 4th lepton

Event Selection (cont.)

SM background yields after common pre-selection:

Channel	µµе	μμμ	eee	ееµ
Drell-Yan	$2.0 \pm 1.4 \pm 0.3$	$0.9 \pm 1.0 \pm 0.1$	$2.8 \pm 1.7 \pm 0.4$	$0.9 \pm 1.0 \pm 0.1$
WZ	$46.1 \pm 6.8 \pm 6.1$	$60.3 \pm 7.8 \pm 8.0$	$40.9 \pm 6.4 \pm 5.4$	$48.6 \pm 7.0 \pm 6.4$
ZZ	$17.7 \pm 4.2 \pm 2.3$	$21.7 \pm 4.7 \pm 2.9$	$15.1 \pm 3.9 \pm 2.0$	$18.2 \pm 4.3 \pm 2.4$
WW	≤ 0.001	≤ 0.001	$0.2\pm0.3\pm0.0$	≤ 0.001
$t\bar{t}$	≤ 0.001	$0.5\pm0.7\pm0.1$	$0.9\pm0.9\pm0.1$	$0.9 \pm 0.9 \pm 0.1$
Single-top	≤ 0.001	$0.1\pm0.4\pm0.0$	$0.0 \pm 0.2 \pm 0.0$	≤ 0.05
Total	$66 \pm 8 \pm 7$	$84 \pm 9 \pm 9$	$60 \pm 8 \pm 6$	$69 \pm 8 \pm 7$
Data	73	87	85	61

Top quark reconstruction (two approaches):

• $HT_s = \Sigma p_T \text{ (lepton)} + \Sigma E_T \text{ (jets)} + MET \text{ (of top cand. daughters)}$

b-tag method

Signal efficiencies (final selection)²⁰

Channel	HT_S -cut Based Selection	b-tag Based Selection
еее	12.4 ± 1.1	3.8 ± 0.6
ееµ	13.8 ± 1.2	5.0 ± 0.7
ине	14.8 ± 1.2	5.1 ± 0.7
μμμ	14.7 ± 1.2	5.3 ± 0.7

Top Reconstruction (HT_s)

- Top reconstruction: assume nominal W-mass
- Find most back-to-back top cand. with jet pT>30 GeV
 - Applying HT_s cut to reduce combinatorics
- Estimation of backgrounds
 - WZ & ZZ from MC, normalized to N_jet=0 bin in data
 - tt + DY from data: matrix method (lepton isolation control region)

WW/WZ/ZZ

300

350

Top Reconstruction (b-tagged)

- Exactly one b-tagged jet is required (pT > 30 GeV)
 - No ambiguity to combine with W boson
 - Best non-b-jet on reconstructed top mass
- Background yields estimated from data
 - Using HT_s estimation plus b-tag efficiency and fake rate
 - Extrapolate to top mass window

Selection	HT_S	b-tag
Background yield	16.2 +/- 2.6*	0.6+/- 0.1*
Data yield	11	0
Expected BR U.L.	< 0.42%	< 0.34%
(1-sigma bound)	[0.30% - 0.64%]	[0.34% - 0.48%]
Observed Upper Limit	< 0.39%	< 0.34%

- No significant signal
 - Both methods see smaller yields than expected
- Upper limit calculated
 - Counting method
 - BR upper limits determined at 95% confidence level (CL)
 - Expected BR limits and 1-sig. bounds based on MC study

^{*} Errors contain statistics from MC study and extrapolation plus systematics uncertainties

Systematics

- Luminosity uncertainty: 4.5%
- Dominant syst. from ttbar x.-sec.
 - → not included in the background yields of previous table
- Numbers are in percentage of the event yields

Source	HT_S (%)	b-tag (%)
Trigger Efficiency	4	4
PDF & cross section	6	6
Lepton selection	7	7
Pile-up events	7	7
Missing energy resolution	8	8
Cross sections (normalization)	11 (7)	11
B-tagging		9
Jet energy scale	10	10
Total	21	23

Summary

- Search for "Flavor changing neutral currents" in ttbar performed using 2011 CMS data
 - Data (~5/fb) taken at 7 TeV
 - Using events with three isolated leptons (e or μ) in final state
 - Two analyses: with and w/o b-tagging
- Analysis yields shows no indication of significant FCNC
 - Upper limit Br($t \rightarrow cZ$) < 0.3% at 95% C.L. given
- 2012 data at 8 TeV:
 - More integrated luminosity and higher energy
 - Stay tuned!

謝謝

Thank YOU!

CMS Detector

- Compact Muon Solenoid
 - A general purposed detector

Event Selection

- Vertex:
 - At least one valid (good+non_fake) vertex
 - Number of DOF > 4, |Z| < 24 mm, Rho < 2
- Lepton: (di-lepton)
 - PF Electron
 - Gsf, pT > 20 GeV, |eta| < 2.1, Avoid ECL crack: eta 1.442-1.566</p>
 - No near-by "clean" muon within |dR| < 0.1</p>
 - Loose: CiC Tight with ID + conversion veto + Rellso 0.125
 - Tight: CiC SuperTight with ID + conv. veto + Rellso 0.1
 - Muon
 - pT > 20 GeV, |eta| < 2.4, Muon ID
 - Loose: relative combined PF isolation < 0.125
 - Tight: relative combined PF isolation < 0.1</p>
- Z boson:
 - mass 60 120 GeV from loose leptons, min dR>0.05
 - Best Z chosen by mass difference, 2nd Z veto
- W boson:
 - PF Missing ET > 30 GeV with one-and-only-one tight lepton
- Jet: Particle-flow AK5 jets with L1,2,3 JEC
 - pT > 30 GeV, |eta| < 2.4
 - JetID Loose selection, constitute tracks associate to Z Tight

Data driven analysis

- To estimate the tt and DY contribution
 - WZ is irreducible for the only difference is # of jets
- Estimating background from 2lep+X(N_{jet}) & 3lep+X (N_{lep})

$$N_{loose} = N_{lep} + N_{jet}$$

N_lep
N_jet
Isolation cuts
N_tight_lep
N_tight_jet

$$N_{tight} = \epsilon_{tight} \cdot N_{lep} + \mathcal{P}_{fake} \cdot N_{jet}$$

- Extrapolation to b-tag selection:
 - Efficiencies and fake rates for b-jet and light-jets
 - Top mass window from MC