

Outline

3. Photon+jet mass resonances

Example theories probed: excited quarks, quirks, Regge string excitations, topological pions)

2011 data: √s = 7 TeV, 2.11 fb⁻¹

Dijet production & kinematics

CM:

Rest frame of the resonance

jet1

Resonance

• Dijet mass calculated from jet 4-vectors $m_{jj} = E_1^* + E_2^* = \sqrt{(p_{j1} + p_{j2})^2}$

Angular variables Jets balance in transverse plane Jet rapidity in CM frame: $y^* = |y_1 - y_2|/2$ Measures of jet $\chi = e^{2|y^*|}$ Measures of jet rapidity separation Boost of dijet system: $y_B = |y_1 + y_2|/2$ high-x LAB: $y_1 = y^* + y_B$ LAB: $y_2 = -y^*$

 $m_{\rm jj} \approx 2p_{\rm T} \cosh(y^*)$

Dijet production & kinematics

Angular variables

Dijet production & kinematics

Angular variables

- Jets balance in transverse plane
- Jet rapidity in CM frame: y* = |y₁-y₂|/2 Measures of jet rapidity separation
- Boost of dijet system: $y_B = |y_1 + y_2|/2$

Many new physics scenarios with dijet final state have small rapidity separation

An observable sensitive to such models is the ratio of "central" to total events:

 $F_{\chi} = N(|y^*| < 0.6) / N(|y^*| < 1.7)$

Dijet event selection

Dijet mass results

Background estimation from smooth fit over all bins. Significance from bin-wise comparison of N_{events} with fit

Mass fit function motivated by massless $2 \rightarrow 2$ scattering: $f(x) = p_1(1-x)^{p_2}x^{p_3+p_4\ln x}$

Dag Gillberg, Carleton

No excess observed

Limits on excited quark production

f signals associated with new phenomena. Bayesian credibility intervals are set by defining [Aig] = [Aig] [Aig] [Aig] = [Aig] [Aig] [Aig] [Aig] = [Aig] [Aig

Limit on colour scalar octets

ed quark diagram.

Model independent cross section limits

Dijet angular resonance searches

- Cross section measured in 5 dijet mass bins x 11 χ-bins
- Background prediction from Pythia 6 with bin-specific NLOJet++ k-factor
- The "BumpHunter" algorithm finds the largest discrepancy for the first five χ-bins at 2 TeV < m_{jj} < 2.6 TeV: p-value: 0.24

Dijet angular resonance searches

0.6

$F_{\chi} = N(|y^*| < 0.6) / N(|y^*| < 1.7)$

- Background prediction from Pythia 6 with bin-specific NLOJet++ k-factor
- p-value with binned likelihood: 0.052
- Largest discrepancy: Global significance of 1.39σ (p-value 0.082) for masses in 2209-3498 GeV

2012-07-04

12

Dag Gillberg, Carleton

Dijet and γ +jet resonance searches with ATLAS

Dijet: Limits on extra dimensions

- Using the F_X vs m_{jj} distribution, limits are set on several New Physics models
 - Semi-model independent quantum black-hole models

<i>n</i> extra	Expected	Observed	
dimensions	limit (TeV)	limit (TeV)	
2	3.82	3.79	
3	3.95	3.93	
4	4.03	4.01	
5	4.09	4.06	
6	4.14	4.11	
7	4.18	4.15	

Lower limits at 95% C.L. on M_D of the QBH model with n=2 to 7 extra dimensions

Quark contact interactions: Observed limit: $\Lambda > 7.6$ TeV Expected limit: $\Lambda > 8.2$ TeV

γ+jet resonance search

Phys. Rev. Lett. 108, 211802 (2012)

- The γ+jet final state is sensitive to a number of new physics scenarios: excited quarks, Regge string excitations, topological pions
- Despite the promising opportunities, this is the first published γ+jet resonance search in over a decade! Last γ+jet search published by CDF in 1994
- Pythia excited quark model used as benchmark
- An extension of the analysis including an angular resonance search is ongoing at ATLAS

Well-measured photon: better sensitivity where stats are available

TABLE II. Relative branching ratios $B_G = \Gamma(f^* \rightarrow fV) / \sum_V \Gamma(f^* \rightarrow fV)$ for decays of excited fermions into gauge bosons for $m^* = \Lambda$, $f_s = f = f' = 1$, and $\alpha_s = 0.11$.

Decay mode	B _G	Decay mode	B_{G}
		$e^* \rightarrow e\gamma$	0.28
$\nu^* \rightarrow \nu Z$	0.39	$e^* \rightarrow eZ$	0.11
$v^* \rightarrow eW$	0.61	$e^* \rightarrow v W$	0.61
$u^* \rightarrow ug$	0.85	$d^* \rightarrow dg$	0.85
$u^* \rightarrow u\gamma$	0.02	$d^* \rightarrow d\gamma$	0.005
$u^* \rightarrow uZ$	0.03	$d^* \rightarrow dZ$	0.05
$\underbrace{u^* \rightarrow dW}_{}$	0.10	$d^* \rightarrow uW$	0.10

Phys. Rev. D42 (1990) 815

Example γ +jet New Physics scenario

Regge excitations of a fundamental string at "string disk" level (tree level)

Results in Gaussian shaped $m_{\gamma j}$ resonance

γ+jet

Dag Gillberg, Carleton Dijet and γ +jet resonance searches with ATLAS

2012-07-04 15

Results: γ +jet resonance search

- **Background estimated** by fit to data across all bins using same functional form as for dijet analysis
- The "BumpHunter" algorithm finds most significant excess for 784< m_{Yi} <1212 GeV with p-value = 0.20

Results: γ+jet resonance search

Summary

No significant excess observed

Limits on generic and several specific New Physics models

Dijet search results $\sqrt{s} = 8$ TeV, 5.3 fb⁻¹

- Cross section limits on generic Gaussian-shaped signals
- Excited quark below 3.66 TeV excluded @ 95% CL

+300 GeV limit due to 7→8 TeV

γ +jet search results $\sqrt{s} = 7$ TeV, 2.1 fb⁻¹

- Cross section limits on generic Gaussian-shaped signals
- Excited quark below 2.46 TeV excluded @ 95% CL

Dijet results $\sqrt{s} = 7 \text{ TeV}$, 4.8 fb⁻¹

95% CL low limits on masses and energy scales of the New Physics models probed

Model, and Analysis Strategy	95% C.L. I	95% C.L. Limits (TeV)		
	Expected	Observed		
Excited quark, mass of q^*				
Resonance in m_{jj}	3.09	3.35		
Resonance in $F_{\chi}(m_{jj})$	2.97	2.58		
Colour octet scalar, mass of s8				
Resonance in m_{jj}	1.94	1.94		
Quantum Black Hole for $n = 6, M_D$				
$F_{\chi}(m_{jj})$	4.14	4.11		
11-bin χ , $m_{jj} > 2.6$ TeV	4.23	3.96		
Contact interaction, Λ , destructive interference				
$F_{\chi}(m_{jj})$	8.2	7.6		
11-bin χ , m_{jj} > 2.6 TeV	8.7	7.8		

previous limit: 460 GeV

Publications and more info

Search for New Phenomena in the Dijet Mass Distribution using 5.8 fb⁻¹ of pp Collisions at sqrt(s)=8 TeV collected by the ATLAS Detector

ATLAS-CONF-2012-088

July 2012

Search for New Phenomena in Dijet Mass and Angular Distributions ATLAS-CONF-2012-038

4.8/fb. March 2012

Search for production of resonant states in the photon-jet mass distribution using pp collisions at sqrt(s) = 7 TeV collected by the ATLAS detector **Plots and more Info arXiv:1112.3580 Phys. Rev. Lett. 108, 211802 (2012)** 2.11/fb December 2011

Dag Gillberg, Carleton Dijet and γ +jet resonance searches with ATLAS 201

2012-07-04 21

The ATLAS calorimeters

22

Jet reconstruction and selection

- Jets reconstructed from calorimeter clusters using the anti- k_t jet finding algorithm with distance parameter R = 0.6
- Jet are calibrated to the hadronic scale in three steps:

- JES uncertainly is about 2.5% for central jets (main uncertainty for the analyses)
- Jet triggers used to collect data

Jet calibration

eton

Dijet and γ +jet resonance searches with ATLAS 2012-07-04

04 24

Dijet kinematics

- Consider LO dijet production
- Both jets balanced in transverse plane
- Rapidity separation: $\Delta y = |y_1 - y_2| = 2 y^*$
- Parton momentum fraction x given by

$$x_1 = \left(2p_T/\sqrt{s}\right) e^{y_{ ext{boost}}}\cosh y^*$$

 $x_2 = \left(2p_T/\sqrt{s}\right) e^{-y_{ ext{boost}}}\cosh y^*$

 $y_{\text{boost}} = 0.5 \ln(x_1/x_2)$

