

SEARCH for Heavy 4th generation quarks at CMS

Sadia Khalil

Kansas State University

On behalf of the CMS Collaboration ICHEP 2012 July 4-12, 2012 - Melbourne, Australia

4th Generation

- A simplest extension of the SM3, adding another fermion generation
- It is not excluded by Electroweak precision measurements
 - G. Kribs, T. Plehn, M. Spannowsky, T. Tait PRD 76 (2007) 075016
- It allows indirect bounds on the Higgs boson mass to be relaxed
 - P. Q. Hung and M. Sher. PRD 77, 037302 (2008)
- It can enhance CP violation significantly to explain the matter antimatter asymmetry in the Universe
 - W. Hou, F.Lee, C. Ma PRD 79, 07302 (2009)
- If SM4 exists we expect small mass splitting between the t' and b' masses: $|m_{t'} m_{b'}| < m_W$
 - M.Baak et al., arXiv:1107.0975

4th Gen: Vector-like Quark

- Vector-like fermions (non-chiral fermions) can be found in models like:
 - Little Higgs model
 - Nucl.Phys.Proc.Suppl.117 (2003)40
 - Warped extra dimensions
 - Phys.Rev.Lett.83:3370-3373,1999
- These models provide an explanation to the large difference between the Plank and the electroweak scale, the so called hierarchy problem in the SM
- T´→tH, tZ or B´→bH, bZ -- flavor changing neutral current (FCNC) decays enhance branching fractions

- CMS 4th generation searches @7 TeV
 - t' pair search
 - dilepton channel
 - lepton+jets channel
 - b' search
 - trilepton channel
 - same sign dilepton channel
 - Inclusive t' and b' search
 - singly produced
 - pair produced

 $t'b \rightarrow bWb$ $b't \to tWbW \to bWWbW$ $b't' \rightarrow tWbW \rightarrow bWWbW$ $t'\overline{t'} \rightarrow bWbW$ $b'\bar{b}' \to tWtW \to bWWbWW$

T'vector like pair

B' vector-like pair

 $T\bar{T} \to tZ\bar{t}Z \to b\bar{b}WWZZ$

 $B\bar{B} \to bZ\bar{b}Z$

4

 $(t'\bar{t'} \rightarrow WbW\bar{b} \rightarrow l\nu b l\bar{\nu}\bar{b})$

 $(t'\bar{t'} \rightarrow WbW\bar{b} \rightarrow l\nu b\bar{b}q\bar{q})$

 $b'\bar{b'} \to WtW\bar{t} \to bWWbWW$

arXiv:1203.5410, submitted to PLB

arXiv:1204.1088, submitted to JHEP

CMS-PAS- EXO-11-099

CMS-PAS- EXO-11-098

10.1103/PhysRevLett.107.271802

Search for $t' \rightarrow bW(l+jets)$

Selection

- A lepton $e(\mu)$ with $p_T > 35$ GeV
- \geq 4 jets of p_T > 35, \geq 1 b-tagged jet
- Missing $E_T > 20 \text{ GeV}$

Strategy

Apply kinematic fit for mass reconstruction (M_{fit}) with constraints

$$\bullet \quad m(Iv) = m(qq) = M_W$$

- m(Ivb) = m(qqb)
- Look in the H_T and M_{fit} tails for signs of a massive quark decay

$$H_T = p_T^{lepton} + p_T^{miss} + \sum p_T^{jets}$$

Search for t' \rightarrow bW(l+jets)

- The 2D H_T vs M_{fit} histograms have few empty or low occupancy bins
- Rebin them to extract the correct statistical inferences
 - Project 2D histograms into ID profiled with analytic functions
 - Sort by ordering the bins in descending S/B ratio
 - Merge neighboring bins into ID histogram until a minimum precision in the expected number of background and signal events is achieved

10

6

20

30

50

Bin Index

Search for t' \rightarrow bW(l+jets)

- Compute the t' pair cross section using CLs method
 - Likelihood ratio is used as a test statistics for an observable x, parameter of interest σ and nuisance parameters α

$$t(x|\sigma) = \begin{cases} L(x|\sigma, \hat{\alpha}_{\sigma}) / L(x|\hat{\sigma}, \hat{\alpha}) & \text{if } \sigma > \hat{\sigma} \\ 1 & \text{if } \sigma \leq \hat{\sigma}. \end{cases}$$

- 95% C.L. upper limit corresponds to $CL_s = \frac{CL_{s+b}}{CL_b} = 0.05.$
- The nuisance parameters includes
 - Normalization of electroweak and ttbar backgrounds
 - Jet energy scale
 - Integrated luminosity
 - Lepton efficiency
 - Parton shower matching threshold 7

Result

Observed limit: $m_{t'} > 560 \text{ GeV/c}^2 @ 95\% \text{ CL}$

Search for inclusive b'/t' production (EXO-11-098)

- Simplify CKM4 with one free parameter: $A = |V_{tb}|^2 = |V_{t'b'}|^2$
 - A > 0.66 (|Vtb| > 0.81 @ 95% C.L.) from Tevatron

$$V_{CKM}^{4 \times 4} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} & V_{ub'} \\ V_{cd} & V_{cs} & V_{cb} & V_{cb'} \\ V_{td} & V_{ts} & V_{tb} & V_{tb'} \\ V_{t'd} & V_{t's} & V_{t'b} & V_{t'b'} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \sqrt{A} & \sqrt{1-A} \\ 0 & 0 & -\sqrt{1-A} & \sqrt{A} \end{pmatrix}$$

Assume degenerate states: $m_{t'} = m_{b'} = m_{a'}$

- Assume the branching fractions to be ~100%
- **Baseline selection**
 - Lepton (e/ μ) with p_T > 40 GeV
 - \geq I jet of p_T > 30 GeV and \geq I b-tagged
 - Missing $E_T > 40 \text{ GeV}$
- Final state topologies contains
 - I-4W bosons ($\geq IW$ decay leptonically)
 - 2 b-quarks
- Search is performed
 - Single lepton(e/ μ) / Same-sign dilepton / Trilepton + jets

sensitivity to all signal process

sensitivity to signal with 1 or 2 b' process

•
$$t'b \rightarrow bWb$$

• $t'\bar{t'} \rightarrow bWbW$
• $b't \rightarrow tWbW \rightarrow bWWbW$
• $b't' \rightarrow tWbW \rightarrow bWWbW$
• $b'\bar{b'} \rightarrow tWtW \rightarrow bWWbWW$
max for A = 0
max for A = 0
max for A = 1
independent of A

5 fb⁻¹

EXO-11-098

5 fb⁻¹

Discriminator: Scalar sum of reconstructed objects (S_T) and hadronic top mass (m_{bVV})

Friday, July 6, 2012

multilepton channel

- Same-sign dilepton channel
 - ▶ \geq 2 leptons (charge ++ or --), \geq 4 jets
 - Backgrounds
 - Wrong-sign lepton(e.g, Z or dilepton events)
 - Fake leptons (single top, semileptonic ttbar, W)
 - Irreducible background (WZ, ZZ, ttV, W[±] W[±])
- Trilepton channel
 - ▶ \geq 3 leptons (charge ++- or +--), \geq 2 jets
 - Background (WZ, ZZ, ttV) estimate from simulation
- Suppress Z events, $|M_{II}-M_z| > 10 \text{ GeV}$

type	2 muons	2 electrons	electron+muon	trilepton
Observed	2	2	2	1
Background	0.83 ± 0.11	1.36 ± 0.19	2.27 ± 0.22	0.96 ± 0.12
Signal ($A = 1, m_{q'} = 550 \text{GeV}$)	3.31 ± 0.15	2.03 ± 0.36	5.29 ± 0.19	3.37 ± 0.16
Signal ($A = 0.8$, $m_{q'} = 550 \text{GeV}$)	3.79 ± 0.15	2.29 ± 0.36	6.00 ± 0.19	3.65 ± 0.16

These event counts are used in the limit calculation

10

Data-driven

11

t'b' production $\propto A$

t'b and t b' production \propto I-A

m_q' < 685 GeV excluded at 95% CL

- Effect of mass diff: m_t' m_b' = 25 GeV is studied
 - Limit shifts about 20 GeV
 - The electroweak t'b' process is omitted
 - Less stringent limit for $m_{t'} = m_{b'}$

750 CMS preliminary, 5 fb⁻¹ at $\sqrt{s} = 7$ TeV

	Z→ee	Z→µµ
B'(350 GeV)	222±6	345±9
Total Pred	648±15	999±26
DATA	604±24	928±30

Assuming a branching fraction of 100% B' \rightarrow bZ

- With the observed upper limit at 95% CL on the production cross section, we exclude a B'quark with a mass < 550 GeV
- See details by Kai-Yi Kao in poster session

Conclusions

Search	Channel	Lower mass limit
t´→bW pair	dileptons	557 GeV/c ²
t´→bW pair	lepton+jets	560 GeV/c ²
b´→tW pair	trilepton and same-sign dilepton	611 GeV/c ²
T′→tZ pair	three leptons	475 GeV/c ²
B'→bZ pair	two leptons	550 GeV/c ²
Model-Dependent t´/b´	lepton(s)+jets	685 GeV/c ²

- CMS has the most stringent limits on the existence of 4th generation quarks
- We have reached the critical mass of ~550 GeV/c² at which fermion's weak interactions become non-perturbative

M.S. Chanowitz, M.A. Furman, I. Hinchcliffe, Phys. Lett.B78, 285 (1978)

Thank you!

Extra material

Particle Flow Algorithm

- Provides a list of observable particles that describe the event
 - muons, electrons, photon, charged and neutral hadrons
- It combines the information from all CMS sub-detectors toachieve this
- This list is used to reconstruct higher level objects like jets, MET

Subsamples with 2W bosons

- Reconstruct hadronic top mass (mbw)
 - Likelihood ratio (LH) with 7 observables (angles, W mass, b-tag discriminator values, p_T of the top quark candidate)
 - Use the jet combination with the largest LR value
- W→qq counting procedure
 - remove the lor 2 b-tag jets
 - Choose the jet pair that minimizes $|m_{j1j2} m_W^{sim}|$
 - If $|m_{j1j2} m_W^{sim}| < \sigma_W^{sim}$, a $W \rightarrow qq$ event is found
 - Remove the jet pair that formed the $W \rightarrow qq$
 - Repeat the procedure until no hadronically decaying W are found

CMS preliminary, 5 fb⁻¹ at $\sqrt{s} = 7$ TeV Events / 10 GeV 10^{3} E lepton+jets, 2b 2W Signal A=1 (X 8) Signal A=0.8 (X 8) Observed Systematic Uncertainty 550 GeV 10 100 300 200 400 500 600 m_{bW} (GeV)

2b2W

Backgrounds for same-sign dilepton channel

- Wrong-sign lepton(e.g, Z or dilepton events)
 - Missing $E_T < 20$ GeV, $M_T < 25$ GeV
 - Require two electrons within a 10 GeV window around Z mass
 - Charge misidentification ratio, $R = N_{SS}/2N_{OS}$
 - Rescale the events passing all selections except the same-sign requirement
- Non-prompt leptons (single top, semileptonic ttbar, W)
 - Missing $E_T < 20$ GeV, $M_T < 25$ GeV
 - Veto events with $|M_{II}-M_z| < 20 \text{ GeV}$
 - Count #loose (N_L) and tight (N_T) leptons with $p_T < 35$ GeV
 - Probability that a loose lepton passes the tight cuts: $\epsilon_{fl} = N_T/N_L$
 - Require the events to pass selection criteria except
 - One tight lepton
 - One loose but not tight lepton
 - Scale the data yields by $R_{fl} = \epsilon_{fl}(1 \epsilon_{fl})$

Search for t' \rightarrow bW(dilepton)

5 fb⁻¹

arXiv:1203.5410

- Backgrounds (mostly data driven)
 - Category I b-mistagged jet(s) and prompt leptons
 - Category II fake lepton(s) and real b-tagged jet(s)
 - Category III b-mistagged jet(s) and fake lepton(s) (negligible)
 - Category IV 2 real b-tagged jets and 2 real leptons (obtained from MC)

Sample	Yield
Category I (from data)	0.7 ± 0.8
Category II (from data)	$0.0\substack{+0.4 \\ -0.0}$
Category III (simulated)	1.0 ± 0.7
Total prediction	1.8 ± 1.1
Data	1

arXiv:1204.1088

Search for $b' \rightarrow tW(di/tri-lepton)$

- Backgrounds (mostly from ttbar)
 - Sources for same sign dilepton channel
 - Type I (data driven) -- Fake lepton
 - Type II (data driven)-- Charge Misidentification
 - Type III (from MC) -- Prompt dileptons
 - Sources for trilepton channel
 - Dominated by 3 prompt leptons events (ttW)

Sources	Same-charge	Trilepton
Type I + Type II	7.8 ± 2.8	
Typelll	3.6 ± 0.6	0.78 ± 0.21
Background sum	11.4 ± 2.9	0.78 ± 0.21
Observed yield	12	I

Friday, July 6, 2012

 With the observed upper limit at 95% CL on the production cross section, we excludes a T´quark with a mass < 475 GeV