ATLAS results on inclusive top quark pair production cross section

Frédéric Derue, LPNHE Paris
(on behalf of the ATLAS collaboration)

36th International Conference on High Energy Physics, ICHEP2012, Melbourne, Australia

ATLAS Online Luminosity

\[\sqrt{s} = 7 \text{ TeV} \]

ATLAS and objects
dilepton (e,\(\mu\),\(\tau\))
lepton + jets
fully hadronic
additionnal results
The ATLAS detector

Muon spectrometer (|η|<2.7): air-cores toroids with gas-based chambers. Trigger and measurement. Momentum resolution <10% up to Eμ~1 TeV

EM calorimeter (|η|<3.2): Pb/LAr accordion. Trigger and e/γ reco and id. σ(E)/E~10%/√E (GeV)+0.7%

HAD calorimeter (|η|<5): Fe/scintillator tiles (central), Cu/W LAr (fwd). Trigger, jets and Etmiss. σ(E)/E~50%/√E (GeV)+3%

Inner Detector (|η|<2.5): Si pixel, SCT, TRT. Tracking and vertexing. e/π separation. σ(p_T)/p_T~0.038% p_T (GeV)+1.5%

Trigger:
L1: hardware, L2-EF, ~200 Hz in output
Object reconstruction

To study top quark it implies good understanding of many different objects reconstructed in all different ATLAS subdetectors

<table>
<thead>
<tr>
<th>Muons</th>
<th>Tau (based on jets)</th>
<th>Electrons</th>
</tr>
</thead>
<tbody>
<tr>
<td>combined fitted tracks</td>
<td>matched calo cluster + 1 or 3 tracks</td>
<td>matched track and EM cluster</td>
</tr>
<tr>
<td>tight identification</td>
<td>identification using a BDT</td>
<td>tight identification using shower shape variables, ID</td>
</tr>
<tr>
<td>central:</td>
<td></td>
<td>central:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>isolated</td>
</tr>
<tr>
<td>isolated</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Jets</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_T-algorithm (R=0.4)</td>
</tr>
<tr>
<td>central: $</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Triggers</th>
</tr>
</thead>
<tbody>
<tr>
<td>based on single lepton high p_T or N jets</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E_T^{miss}</th>
</tr>
</thead>
<tbody>
<tr>
<td>vector sum of energy in calorimeter cells, ID, spectro projected in transverse plane, associated with high p_T object and dead material loss</td>
</tr>
<tr>
<td>$S_{ET\text{miss}} = E_{T\text{miss}}/(0.5 \times \sum E_T)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>b-tagging</th>
</tr>
</thead>
<tbody>
<tr>
<td>long lifetime of B hadrons: NN based on impact parameter, secondary vertex, fragmentation properties, resonance mass</td>
</tr>
</tbody>
</table>
Top quark production and decays

Production mechanism

☆ $t\bar{t}$ pair, 85% by gluon fusion, ~15% by $q\bar{q}$ production
☆ single top (electroweak)

Predictions $\sqrt{s}=7$ TeV

$\sigma(pp \to t\bar{t})_{\text{NNLOapprox}} = 167^{+17}_{-18}$ pb

Top pair event classification according to W decays

Branching ratio

Final state

Backgrounds

τ channels: 13.5% for τ+jets and 6.3% for τ+e/µ+jets
pair production with 2 leptons + jets

Signature: 2 isolated e/μ + E_T^{miss} + jets (1b)

Trigger: 1 single isolated lepton
Offline: opposite sign leptons + E_T^{miss} >30 GeV, $\Sigma E_{T}(e\mu)$, m_\ll (Z veto)

Analysis Strategy: counting experiment data driven estimation of Z+jets, W+jets and QCD backgrounds

$\sigma_{tt} = 176 \pm 5$ (stat) $^{+14}_{-11}$ (syst) ± 8 (lumi) pb

Systematics: in eμ : Jet/E_T^{miss} (~4 pb), generator (~4.5 pb), fake lepton (~3 pb)
pair production with e/µ + τ + jets

BR could be enhanced by the existence of H±

Signature:
1 isolated e/µ + τ + \(E_T^{\text{miss}} \) + jets (1b)

Trigger: 1 single isolated lepton

Offline: opposite sign lepton + τ
\(E_T^{\text{miss}} > 30 \text{ GeV}, \sum E_T > 200 \text{ GeV}, \) 2 jets at least one of them is b-tagged

Analysis Strategy: perform template fit of BDT
- background distribution is different with jet flavor
- to reduce # of templates, SS events are subtracted to remove b, gluon originated τ candidates (charge symmetric)

\[
\sigma_{\tt (µ+τ)} = 186 \pm 15 \text{ (stat)} \pm 20 \text{ (syst)} \pm 7 \text{ (lumi)} \text{ pb} \\
\sigma_{\tt (e+τ)} = 187 \pm 18 \text{ (stat)} \pm 20 \text{ (syst)} \pm 7 \text{ (lumi)} \text{ pb} \\
\sigma_{\tt} = 186 \pm 13 \text{ (stat)} \pm 20 \text{ (syst)} \pm 7 \text{ (lumi)} \text{ pb}
\]

Systematics: b-tag (~9 pb), τ-ID (~4 pb)

overall precision ~14%, limited by systematic uncertainties
Signature: 1 isolated e/μ + E_{miss} + jets

Analysis Strategy: multivariate discriminant based on: η_{l}, p_{T,lead jet}, Aplanarity, H_{T,3p}
l-data driven estimation of Z+jets and QCD backgrounds
W+jets normalized to data

\[\sigma_{\text{tt}} = 179.0 \pm 3.9 \text{ (stat)} \pm 9.0 \text{ (syst)} \pm 6.6 \text{ (lumi)} \text{ pb} \]

Systematics: generator (5.4 pb), muon (4.1 pb), lumi (6.6 pb)

Overall precision ~6.5%, limited by systematic uncertainties

ATLAS Preliminary

\[0.70 \text{ fb}^{-1} \]

μ + Jets

\[\text{DATA 2011, } \sqrt{s} = 7 \text{ TeV} \]
pair production in hadronic modes

Signature:
no $E_T^{\text{miss}} + \text{jets (2b)}$

Trigger: 5 jets with $p_T > 30$ GeV

Offline: ≥ 5 jets with $p_T > 55$ GeV
and ≥ 2 b-tagged jet
- 6th jet with $p_T > 30$ GeV
- $S_{ETmiss} < 3$
- Kinematical likelihood fit to find correct association of jets to reconstruct m_t

Signal and background modelling:
data driven estimation of background
35% signal and 65% multijet by the pre-btagged sample in the data

Analysis Strategy:
Unbinned likelihood fit to m_t
$6 \leq \text{Njet} \leq 10$
χ^2 for m_t and m_w is calculated and satisfy $\chi^2 < 30$

$\sigma_{tt} = 168 \pm 12 \text{ (stat)}^{+60}_{-57} \text{ (syst)} \pm 7 \text{ (lumi)} \text{ pb}$

Systematics: JES (+20, -17 pb), b-tagging (17 pb), ISR/FSR (17 pb)

overall precision ~37%, limited by systematic uncertainties
pair production in hadronic modes with τ

~10% of all tt events, BR enhanced by H^\pm

Signature:

$\tau_{had} + E_T^{miss} + \text{jets (2b)}$

Trigger: ≥ 4 jets ($p_T > 10$ GeV @L1),

≥ 2 b-tagged at EF

Offline: ≥ 5 jets, ≥ 2 of them b-tagged

- $S_{ETmiss} > 4$
- 3 jets (one is b-tagged) with highest p_T sum to be m_{top}
- select remaining non b-tagged jet with $p_T > 40$ GeV as τ candidate
- e/μ veto

Analysis Strategy: Fit to number of good quality tracks associated to tau lepton, with 3 templates

Signal: from tt MC sample

tt combinatorics: from $tt\mu + \text{jets}$ control region

Multi-jet: from $1.5 < S_{ETmiss} < 2$
control region

\[
\sigma_{tt} = 200 \pm 19 \, \text{(stat)} \pm 43 \, \text{(syst)} \, \text{pb}
\]

overall precision ~23%, limited by systematic uncertainties

Systematics: ISR/FSR (12 pb), b-tag (10 pb), Fit (7 pb)
Additional features of top pair production

\(\bar{t}t + \text{photon} \)

Signature : \(1 \text{ e/}\mu + \mathbb{E}_T^{\text{miss}} + \text{jets (1b)} + \gamma \)

Offline : similar to lepton+jets analysis

tight photon with \(p_T > 15 \text{ GeV} \)

Signal and background modelling : signal, hadron fakes and QCD+\(\gamma \) templates are obtained by data driven methods
electron fakes, \(\bar{t}t\gamma \), \(W+\text{jets}+\gamma \) templates are obtained from MC

Analysis Strategy : Fit to track isolation of \(\gamma \)

\[\sigma_{\bar{t}t}(p_T, \gamma > 8 \text{ GeV}) \times \text{BR}(LJ, DL) = 2.0 \pm 0.5 \text{ (stat)} \pm 0.7 \text{ (syst)} \pm 0.08 \text{ (lumi)} \text{ pb} \]

expected (NLO) = \(2.1 \pm 0.4 \text{ pb} \)

overall precision \(\sim 43\% \), limited by systematic uncertainties

Systematics :
- \(\gamma \)-ID (0.33 pb),
- ISR/FSR (0.31 pb),
- JES (0.28 pb)
• **ttbar production cross section**
 - measured accuracy < theoretical one
 - σ_{tt} is measured in alternative channels (τ), showing SM is applicable at LHC
 - additional features are explored (tt+jets)
• **more results in talk on differential measurements !**

ATLAS Preliminary

<table>
<thead>
<tr>
<th>Channel & Lumi.</th>
<th>σ_{tt} [pb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single lepton 0.70 fb$^{-1}$</td>
<td>179 ± 4 ± 9 ± 7 pb</td>
</tr>
<tr>
<td>Dilepton 0.70 fb$^{-1}$</td>
<td>173 ± 6 ± 14 ± 8 pb</td>
</tr>
<tr>
<td>All hadronic 1.02 fb$^{-1}$</td>
<td>167 ± 18 ± 78 ± 6 pb</td>
</tr>
<tr>
<td>Combination</td>
<td>177 ± 3 ± 8 ± 7 pb</td>
</tr>
</tbody>
</table>

New measurements

τ_{had} + jets 1.67 fb$^{-1}$	200 ± 19 ± 42 ± 7 pb
τ_{had} + lepton 2.05 fb$^{-1}$	186 ± 13 ± 20 ± 7 pb
All hadronic 4.7 fb$^{-1}$	168 ± 12 ± 60 ± 57 ± 6 pb

ATLAS Preliminary

- precision ~6%, half of theory uncertainty
- agreement of channels within uncertainties
Backup slides
Simulation

- simulated \(\ttbar \) events generated using MC@NLO with PDFs from CTEQ6.6 (\(m_t = 172.5 \) GeV); sample normalized to 164.6 pb (from NNLO prediction using [5])
 - parton showering modeled with HERWIG
 - underlying event modeled with JIMMY
- single tops generated using MC@NLO
- W/Z bosons in association with jets generated with ALPGEN interfaced to HERWIG/JIMMY with CTEQ6.1
- di-boson events generated by HERWIG with MRST2007lomod
- pile-up is simulated with a value of 4-8 interactions per bunch crossing in order to reflect what is seen in the data