

ATLAS results on inclusive top quark pair production cross section

Frédéric Derue, LPNHE Paris (on behalf of the ATLAS collaboration)

36th International Conference on High Energy Physics, ICHEP2012, Melbourne, Australia

ATLAS and objects dilepton (e,μ,τ) lepton + jets fully hadronic additionnal results

The ATLAS detector

ICHEP 2012, 05th July 2012

Object reconstruction

To study top quark it implies good understanding of many different objects reconstructed in all different ATLAS subdetectors

Top quark production and decays

Production mechanism

🖈 tt pair, 85% by gluon fusion, ~15% by $q\bar{q}$ production * single top (electroweak)

Predictions \sqrt{s} = 7 TeV

 $\sigma(pp \rightarrow t\bar{t})_{NNLOapprox} = 167^{+17}_{-18} \text{ pb}$

Computed with: Aliev et. al., HATHOR, arXiv:1007:1327 (2011)

Top pair event classification according to W decays

MET b-iet

lepton + jets

29.6% 1 isolated lepton E_{-}^{miss} 2 b-, 2 light jets moderate (mainly W+jets) τ channels : 13.5% for τ +jets and 6.3% for τ +e/ μ +jets

45.7% no lepton no E_{T}^{miss} 2 b-, 4 light jets huge (mainly QCD)

Backgrounds

Final state

Branching ratio 4.9% 2 isolated leptons large E_T^{miss} 2 b-jets few (mainly Z+jets)

ICHEP 2012, 05th July 2012

pair production with 2 leptons + jets

<u>Signature</u> : 2 isolated $e/\mu + E_T^{miss} + jets$ (1b)

and QCD backgrounds

<u>Trigger</u> : 1 single isolated lepton <u>Offline</u> : opposite sign leptons + E_{τ}^{miss} >30 GeV, $\Sigma E_{\tau}(e\mu)$, m_{\parallel} (Z veto) <u>Analysis Strategy</u> : counting experiment data driven estimation of Z+jets, W+jets

JHEP1205 (2012) 059

 $\sigma_{tt} = 176 \pm 5 \text{ (stat)}^{+14}_{-11} \text{(syst)} \pm 8 \text{ (lumi) pb}$

overall precision ~9%, limited by systematic uncertainties

<u>Systematics</u> : in $e\mu$: Jet/ E_T^{miss} (~4 pb), generator (~4.5 pb), fake lepton (~3 pb)

pair production with $e/\mu + \tau + jets$

BR could be enhanced by the existence of H^{\pm} Signature : 1 isolated $e/\mu + \tau + E_{\tau}^{miss} + jets$ (1b)

<u>Trigger</u> : 1 single isolated lepton <u>Offline</u> : opposite sign lepton + τ E_{τ}^{miss} >30 GeV, ΣE_{τ} >200 GeV, 2 jets at least one of them is b-tagged <u>Analysis Strategy</u> : perform template fit of BDT

- background distribution is different with jet flavor
- to reduce # of templates, SS events are subtracted to remove b, gluon originated τ candidates (charge symmetric)

arXiv 1205.2067 (2012)

 $\sigma_{tt}(\mu+\tau) = 186 \pm 15 \text{ (stat)} \pm 20 \text{ (syst)} \pm 7 \text{ (lumi) pb}$ $\sigma_{tt}(e+\tau) = 187 \pm 18 \text{ (stat)} \pm 20 \text{ (syst)} \pm 7 \text{ (lumi) pb}$ $\sigma_{tt} = 186 \pm 13 \text{ (stat)} \pm 20 \text{ (syst)} \pm 7 \text{ (lumi) pb}$

> overall precision ~14%, limited by systematic uncertainties

Systematics : b-tag (~9 pb), τ-ID (~4 pb)

ICHEP 2012, 05th July 2012

pair production with lepton + jets

Events

 10^{6}

10⁵

Signature : 1 isolated e/μ + E_{priss}+ jets

<u>Analysis Strategy</u> : multivariate discriminant based on: η_{I} , $p_{T,lead jet}$,Aplanarity, $H_{T,3p}$ data driven estimation of Z+jets and QCD backgrounds W+jets normalized to data

Data 2011, \scripts = 7 TeV

W+Jets

QCD Multije Other EW

ATLAS Preliminary

0.70 fb

μ + Jets

pair production in hadronic modes

<u>Signature</u> :

no E_T^{miss} + jets (2b)

- <u>Trigger</u> : 5 jets with p_{T} >30 GeV
- <u>Offline</u> : \geq 5 jets with $p_{T} > 55 \text{ GeV}$
- and \geq 2 b-tagged jet
- 6^{th} jet with $p_{T} > 30 \text{ GeV}$
- S_{ETmiss}< 3
- Kinematical likelihood fit to find correct association of jets to reconstruct $\rm m_{t}$

<u>Signal and background modelling</u> : data driven estimation of background 35% signal and 65% multijet by the pre-btagged sample in the data

Analysis Strategy : Unbinned likelihood fit to m_t , $6 \le Njet \le 10$, $\chi 2$ for m_t and m_w is calculated and satisfy $\chi 2 < 30$

$$\sigma_{tt} = 168 \pm 12$$
 (stat) $^{+60}_{-57}$ (syst) ± 7 (lumi) pb

overall precision ~37%, limited by systematic uncertainties

<u>Systematics</u> : JES (+20, -17 pb), b-tagging (17 pb), ISR/FSR (17 pb)

pair production in hadronic modes with τ

- ~10% of all tt events, BR enhanced by H[±] Signature :
- $\tau_{had} + E_T^{miss} + jets$ (2b)
- <u>Trigger</u> : \geq 4 jets (p₁>10 GeV @L1),

 \geq 2 b-tagged at EF

<u>Offline</u> : \geq 5 jets, \geq 2 of them b-tagged

- S_{ETmiss}> 4

- 3 jets (one is b-tagged) with highest $p_{_{\rm T}}$ sum to be $m_{_{\rm top}}$
- select remaining non b-tagged jet with $p_{\tau} > 40$ GeV as τ candidate

- e/µ veto

 $\begin{array}{l} \underline{Analysis\ Strategy}: \mbox{Fit to number of good}\\ \mbox{quality tracks associated to tau lepton,}\\ \mbox{with 3 templates}\\ \mbox{Signal : from tt MC sample}\\ \mbox{tt combinatorics : from tt } \mu \ + \ \mbox{jets}\\ \mbox{control region}\\ \mbox{Multi-jet : from 1.5 < S}_{\mbox{ETmiss}} \ < 2\\ \mbox{control region}\\ \end{array}$

 σ_{tt} = 200 ± 19 (stat) ± 43 (syst) pb

overall precision ~23%, limited by systematic uncertainties

<u>Systematics</u> : ISR/FSR (12 pb), b-tag (10 pb), Fit (7 pb)

Additional features of top pair production

tt + photon <u>Signature</u> : 1 e/ μ + E^{miss}_T + jets (1b) + γ

<u>Offline</u> : similar to lepton+jets analysis tight photon with p_{T} >15 GeV

Signal and background modelling : signal, hadron fakes and QCD+ γ templates are obtained by data driven methods electron fakes, tt γ , W+jets+ γ templates are obtained from MC

<u>Analysis Strategy</u> : Fit to track isolation of γ

 $\sigma_{tt\gamma}(p_{\tau},\gamma > 8 \text{ GeV}) \times BR(LJ,DL) =$ 2.0 ± 0.5 (stat) ± 0.7 (syst) ± 0.08 (lumi) pb expected (NLO) = 2.1 ± 0.4 pb

overall precision ~43%, limited by systematic uncertainties

<u>Systematics</u> : γ-ID (0.33 pb), ISR/FSR (0.31 pb), JES (0.28 pb)

Summary

ttbar production cross section

- measured accuracy < theoretical one
- σ_{tt} is measured in alternative channels (τ), showing SM is applicable at LHC
- additional features are explored (tt+jets)
- more results in talk on differential measurements !

Backup slides

Simulation

- simulated tt events generated using MC@NLO with PDFs from CTEQ6.6 (mt = 172.5 GeV); sample normalized to 164.6 pb (from NNLO prediction using [5])
 - parton showering modeled with HERWIG
 - underlying event modeled with JIMMY
- single tops generated using MC@NLO
- W/Z bosons in association with jets generated with ALPGEN interfaced to HERWIG/JIMMY with CTEQ6.1
- di-boson events generated by HERWIG with MRST2007lomod
- pile-up is simulated with a value of 4-8 interactions per bunch crossing in order to reflect what is seen in the data