

Searches in s-channel Single Top Quark Production at ATLAS

Barbara Alvarez Gonzalez on behalf of the ATLAS Collaboration

ICHEP, July 6, 2012

OVERVIEW

- Introduction and motivation
- Present the results of two ATLAS analyses:
 - Search for s-Channel Single Top-Quark Production
 ⇒ https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2011-118/
 - Search for tb resonances ⇒ http://arxiv.org/abs/1205.1016
- Event selection and background estimation
 - Shared in both analyses
- Different techniques for signal extraction:
 - Cut-based
 - Template fit
- Summary

Introduction and Motivation

- Single top was first observed at Fermilab in 2009 by CDF and D0
- In 2011, t-channel observations by ATLAS and CMS
- Three production mechanisms:
 - t-channel (σ =65pb @ 7TeV LHC)
 - Wt (σ=16pb @ 7TeV LHC)
 - s-channel (σ=5pb @ 7TeV LHC)

- s-channel single top:
 - ullet Tiny signal, \sim 5 times larger than at Tevatron
 - Very challenging
 - Sensitive probe to new physics processes (W' bosons, charged Higgs bosons,...)

Feynman Diagrams

Use same selection and background estimation in both searches

s-channel single top

proton q w' t proton

 $W' \rightarrow tb$

Key Ingredients

- Lepton identification
- b-tagging algorithms
- Jet energy scale

Event Selection

Data

- Single lepton (e/ μ) triggers
 - 0.70/1.04 fb⁻¹ of ATLAS data

Event Selection

- One isolated **lepton** (e/ μ)
 - p_T > 25 GeV
 - $ullet |\eta| <$ 2.47 electron / $|\eta| <$ 2.5 muons
- *E_T^{miss}* > 25 GeV
- Two energetic and central jets:
 - $|\eta| < 2.5$
 - $E_T > 25 \text{ GeV}$
 - At least one b-tagged (57% eff.)
- Triangular cut:

$$m_T(W) > 60 \text{ GeV} - E_T^{miss}$$

Background Estimation: Classified in three groups

Top and EWK Processes

- Model from simulation
- Normalize to theory: $N_{events} = \epsilon_{evt} \sigma \int L dt$

QCD Multijets

- Model from data
- Normalize to data: E_T^{miss} fit

W+jets: W+HF/light

- Model from simulation
- Normalize to data

Background Estimation: QCD and W+jets

QCD Method

- ullet Fitting the E_T^{miss} distribution
- QCD shape taken from the jet-electron sample

Jet-electron Candidate

- A jet is misidentified as a lepton
- A lepton from semileptonic decay of a heavy hadron jet

W+jets Method

- Tag counting method
- The kinematic shape and acceptances are taken from simulation
- The overall normalization and the flavour composition are derived from data

Search for s-channel Single Top-Quark Production

Background Modeling and Event Yields

- Signal estimation:
 - Model from simulation
 - Normalize to theory

$$N_{\text{events}} = \epsilon_{\text{evt}} \sigma_{s-\text{channel}} \int L dt$$

					ပိ
	Pretag events		Single-tag	ged events	_
	Electron	Muon	Electron	Muon	
s-channel	49±5	55±6	24±2	26±3	
t-channel	580±60	630±60	260±30	280±30	
Wt	230±20	220±20	90±10	90±9	
$t\overline{t}$	1100±90	1200±100	490±40	520±40	S
W+jets	38300 ± 10700	49700 ± 13900	250±70	330 ± 90	Events
Wc+jets	10900 ± 2500	12900±3000	900±210	1070 ± 250	Š
Wbb+jets	1900±900	2300±1100	490±230	560±260	æ
Wcc+jets	4800±2200	5900±2700	270±120	340±160	Candidate
Diboson	690±30	820±40	35±2	40±2	320
Z+jets	5900±3600	3900 ± 2300	70±40	60±40	Ö
Multijets	8100±4100	3700 ± 1900	280±140	320 ± 160	
Total Prediction	72600±12500	81400±14800	3200±400	3600±400	
Data	71877	82035	3242	3561	
S/√B	0.18	0.19	0.42	0.44	

andidate Events

Search for s-channel Single Top-Quark Production

Discriminant Technique

- Sequential cuts applied to isolate the s-channel signal
- Used signal/ \sqrt{bkg} as figure of merit

Cut-based Selection

- Double-tagged events
- $30 < m_{top,j2} < 247 \text{ GeV/c}^2$
- $p_T(j_1, j_2) < 189 \text{ GeV/c}$
- *m_T(top*)<111 GeV
- $0.43 < \Delta R(b jet_1, b jet_2) < 3.6$
- 123< $m_{top,i1}$ <788 GeV/c²
- $0.74 < \Delta R(b jet_1, lepton) < 4.68$

Search for s-channel Single Top-Quark Production Result

Results

- 16 signal & 289 background final events, $S/\sqrt{B} = 0.94$
- Profile Likelihood used to extract the cross section limit:

$$\sigma_{s-chan} <$$
 26.5 pb

Possible Improvements

- Use the full LHC dataset
- Add single-tagged events
- New b-tagger (better c separation)
- Reduce systematic uncertainties

Source of Systematic	$\Delta \sigma / \sigma$ [%]
Uncertainties	cut-based
Data statistics	±100
MC statistics	±70
b-tagging	-30/+20
Jet and lepton modeling	-20/+10
MC generator modeling	-60/+20
Multijets normalization	± 40
Others	-10/+30
Luminosity	±50
All systematics	-110/+90
Total uncertainty	-160/+150

Observed

Benchmark Model

Right-handed W'_R

 A right-handed W'_R with Standard Model-like couplings is chosen as the benchmark model for the search for tb resonances

• Next-to-leading-order (NLO) branching ratio and production W'_R cross section values estimated by Zack Sullivan

m _{W'_R} [GeV]	$\mathcal{B}(W_R' \to tb)$	$\sigma imes \mathcal{B}$ [pb]
500	0.298 ± 0.002	54.6 ± 2.1
750	0.319 ± 0.001	10.9 ± 0.6
1000	0.326 ± 0.001	2.92 ± 0.18
1250	$0.328 \pm < 0.001$	0.91 ± 0.07
1500	$0.330 \pm < 0.001$	0.31 ± 0.03
1750	$0.331 \pm < 0.001$	0.11 ± 0.01
2000	$0.332 \pm < 0.001$	0.044 ± 0.005

Z. Sullivan, Phys. Rev. D **66**, 075011 (2002) [arXiv:hep-ph/0207290]

Background Modeling and Event Yields

Same event selection and bkg estimation than the s-channel analysis

• Single- and double-tagged events used in the analysis

m _{W'R} [GeV]	Single-tagged	Double-tagged
500	973±37	455±17
750	174±9	77±4
1000	42±3	15±1
1250	11±1	3.9 ± 0.3
1500	3.2 ± 0.3	1.0 ± 0.1
1750	1.0 ± 0.1	0.26 ± 0.03
2000	0.36 ± 0.04	0.09±0.01

5970±1000 1120±560 1560±130 1240±90	47±	-47 -30
1560±130	360	∃30
1240±90	120-	40
	120_	-10
320 ± 120	14∃	<u>-</u> 2 ∼
0200 ± 120	0 830 \pm	190
10428	84	4

Background Modeling and Event Yields

Same event selection and bkg estimation than the s-channel analysis

• Single- and double-tagged events used in the analysis

m _{W'R} [GeV]	Single-tagged	Double-tagged
500	973±37	455±17
750	174±9	77±4
1000	42±3	15±1
1250	11±1	3.9 ± 0.3
1500	3.2 ± 0.3	1.0 ± 0.1
1750	1.0 ± 0.1	0.26 ± 0.03
2000	0.36 ± 0.04	0.09±0.01

5970±1000 1120±560 1560±130 1240±90	47±	-47 -30
1560±130	360	∃30
1240±90	120-	40
	120_	-10
320 ± 120	14∃	<u>-</u> 2 ∼
0200 ± 120	0 830 \pm	190
10428	84	4

Bumphunter

- The BUMPHUNTER tool is used in this analysis
 (http://arxiv.org/abs/1101.0390) to search for any excess in the
 data events caused by tb resonances
- Data and MC comparisons over m_{tb}:
 - One background template
 - One data template
 - Single and double tagged events separate

Single-tagged

Double-tagged

No significant data excess has been identified

Results

- Set limits on the $\sigma(pp \to W_R') \times \mathcal{B}(W_R' \to tb)$ at 95% CL
- Determined using Bayesian approach
- The method uses a Binned Likelihood function:

$$\mathcal{L}(data|\sigma B, \theta_i) = \prod_{k=1}^{N_{bin}} \frac{\mu_k^{n_k} e^{-\mu_k}}{n_k!} \prod_{i=1}^{N_{sys}} G(\theta_i, 0, 1)$$

- Observed (expected) $\sigma \times B$ limits: 6.1-1.0 (4.5-1.4) pb for W'_R masses from 0.5 to 2.0 TeV
- Observed (expected) lower mass limit is: $m_{W'_R} > 1.13$ (1.13) TeV

Possible Improvements

- Use the full LHC dataset
- Signal optimization
- Search also for left-handed W'

'Summary

- Presented the latest ATLAS results on:
 - Search for s-Channel Single Top-Quark with 0.7 fb⁻¹

$$\sigma_{s-chan} <$$
 26.5 pb

• Search for *tb* resonances with 1.04 fb⁻¹ $m_{W'_H} >$ **1.13 TeV**

- Work ongoing to update and improve the results
- Focus on:
 - b-tagging algorithms
 - Optimization to isolate the signal (more sophisticated techniques)
 - Reduce the impact of systematics

Stay tuned for future results!!

THANK YOU VERY MUCH FOR YOUR ATTENTION!!

BACK-UP SLIDES

Documentation

The s-channel single top results presented as a CONF Note:

- Title: Search for s-Channel Single Top-Quark Production in pp Collisions at sqrt(s) = 7 TeV
- Authors: ATLAS Collaboration
- Report-no: ATLAS-CONF-2011-118
- Link: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2011-118/

The tb resonances research submitted to PRL:

- Title: Search for tb resonances in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector
- Authors: ATLAS Collaboration
- Report-no: CERN-PH-EP-2012-087
- Link: http://arxiv.org/abs/1205.1016

Background Estimation: QCD Muon sample

- \bullet E_T^{miss} fitting method used for normalization
 - The muon QCD shape, on the fitting, is taken from the jet-electron sample

 The QCD shape for the analysis is also taken from the jet-electron sample.

Systematics

- ISR/FSR
- JES, JER, JETreco
- Lepton Scale factors
- PDF, Generator and Parton Shower
- b-tagging and Mistag scale factor
- tt̄, Wt, t-chan, Z+jets and diboson theory cross section
- QCD normalization (50% and 100%)
- m_{tb} shape
- W+jets shape
- W+jets normalization
- Lumi 3.7%

Systematic	Background	Signal
MCGen	YES	NO
PartSh	YES	NO
TTbar xs	YES	NO
t-channel xs	YES	NO
Wt xs	YES	NO
Diboson xs	YES	NO
Z+jets xs	YES	NO
QCD	YES	NO
W+jets Shape	YES	NO
W+jets norm	YES	NO
ISRFSR	YES	YES
PDF	YES	YES
Lepton Scales	YES	YES
JER	YES	YES
JET reco	YES	YES
JES	YES	YES
BTAG	YES	YES
LQTAG	YES	YES
m _{tb} shape	YES	NO
LÜMI	YES	YES

