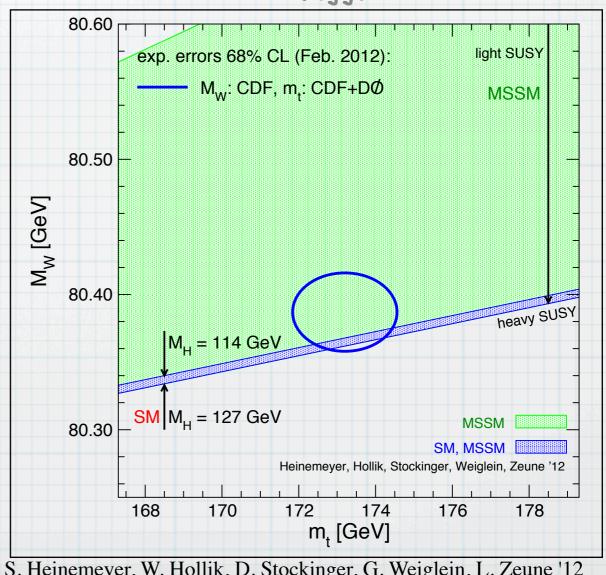
# Measurement of the Top quark mass

Giuseppe Salamanna (Queen Mary, University of London) for the ATLAS Collaboration


ICHEP 2012, Melbourne, Australia

Jul 5th, 2012

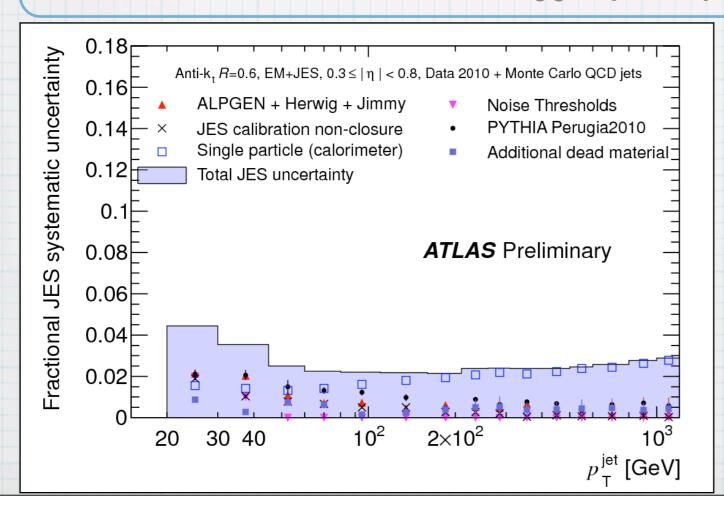
# Importance of mt

- \* Top quark plays important role in EW sector
  - \* contribution to W mass
  - \* heaviest of quarks, only particle with Yukawa coupling O(1) → large radiative contribution to mHiggs

> Precise measurement of mt vital to check consistency of SM and complements direct H searches



#### Experimental building blocks


for details see back-up

Leptons p<sub>T</sub>>20 ( $\mu$ ) or E<sub>T</sub>>25 (e) GeV  $I_{\eta}I < 2.5$  Isolated in tracker and calorimeter

Jets: Anti-k<sub>T</sub>, size 0.4  $p_T > 25$  GeV  $l\eta l < 2.5$ 

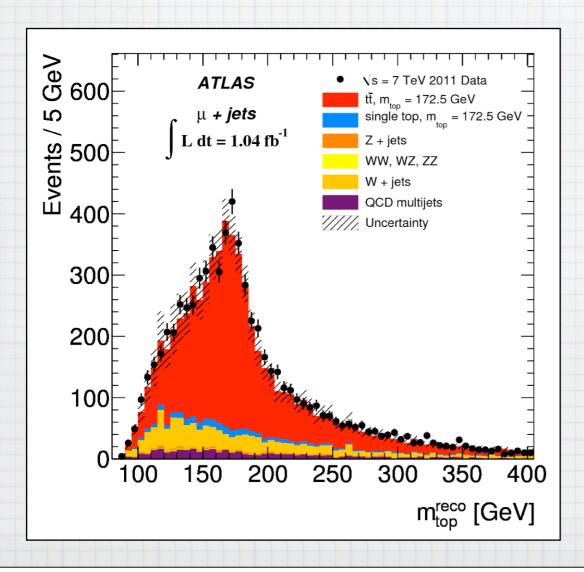
Etmiss > 20-35 GeV (depends on channel)

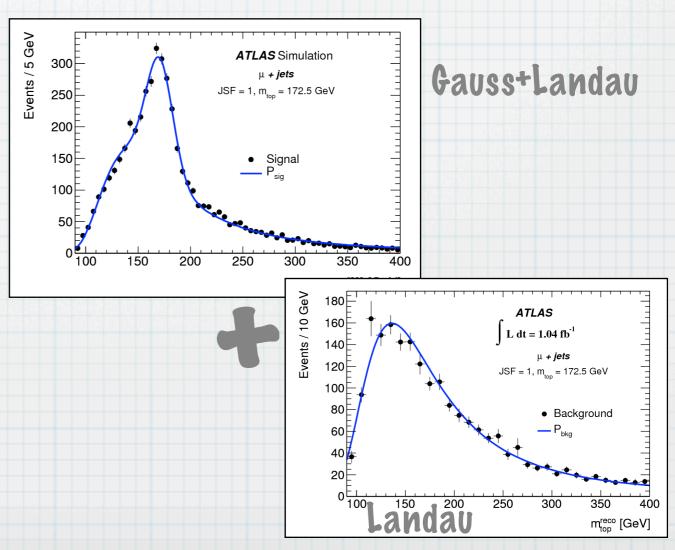
1 or 2 b-tagged jet (depends on channel)



- \* uncertainty on JES: 2-3% in Top ptjet range
  - \* now improved to 1%
- \* additional JES uncertainty for b-jets: 1-2.5% depending on pt<sup>jet</sup>

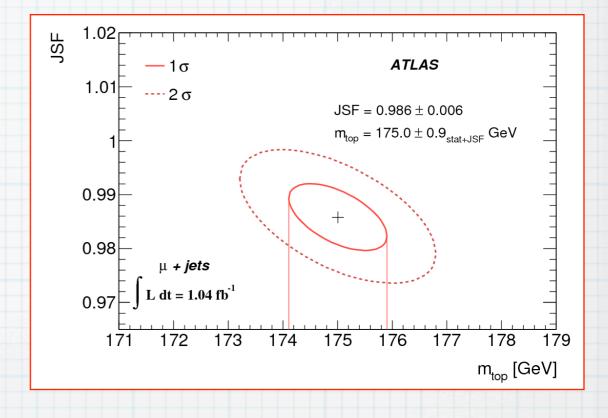
#### 2-0 template (L=1.04 fb-1, l+jets)


- $\Rightarrow$  Sensitivity of measured  $m_t$  to JES reduced by simultaneous fitting of global jet scaling factor (JSF)
- JSF sensitive to JES as well as MC modeling (fragmentation, radiation)
  - from optimum match of expected di-jet invariant mass in MC to data
- plus: before fitting, j-j-b mass (mtreco) calculated correcting jet energies back to parton level (Qi factors) to agree with mwppg:


$$\chi^2 = \sum_{i=1}^{2} \left[ \frac{E_{\text{jet,i}}(1 - \alpha_i)}{\sigma(E_{\text{jet,i}})} \right]^2 + \left[ \frac{M_{\text{jet,jet}}(\alpha_1, \alpha_2) - m_W}{\Gamma_W} \right]^2$$

- •bJES unconstrained by this method, most important syst (see later)
- ✓ Complementary 1-D template fit: approach of using observable with built-in small sensitivity to JES

#### 2-17 fit


- \* use templates of reconstructed top mass from a grid of true top masses [160-190 GeV] and JSF [0.9-1.1]
- \* feed into unbinned likelihood fit
  - \* good linearity input mt vs result of the fits checked with toy MC





# Results

| <del>II -</del>                       | Combinations |        |
|---------------------------------------|--------------|--------|
|                                       | 1d           | 2d     |
| Measured value of $m_{\text{top}}$    | 174.35       | 174.53 |
| Data statistics                       | 0.91         | 0.61   |
| Jet energy scale factor               | na           | 0.43   |
| Method calibration                    | < 0.05       | 0.07   |
| Signal MC generator                   | 0.74         | 0.33   |
| Hadronisation                         | 0.43         | 0.15   |
| Pileup                                | < 0.05       | < 0.05 |
| Underlying event                      | 0.08         | 0.59   |
| Colour reconnection                   | 0.62         | 0.55   |
| ISR and FSR (signal only)             | 1.42         | 1.01   |
| Proton PDF                            | 0.15         | 0.10   |
| W+jets background normalisation       | 0.18         | 0.37   |
| W+jets background shape               | 0.15         | 0.12   |
| QCD multijet background normalisation | < 0.05       | 0.20   |
| QCD multijet background shape         | 0.09         | 0.27   |
| Jet energy scale                      | 1.23         | 0.66   |
| b-jet energy scale                    | 1.16         | 1.58   |
| b-tagging efficiency and mistag rate  | 0.17         | 0.29   |
| Jet energy resolution                 | 0.36         | 0.07   |
| Jet reconstruction efficiency         | 0.10         | < 0.05 |
| Missing transverse momentum           | < 0.05       | 0.13   |
| Total systematic uncertainty          | 2.50         | 2.31   |
| Total uncertainty                     | 2.66         | 2.39   |

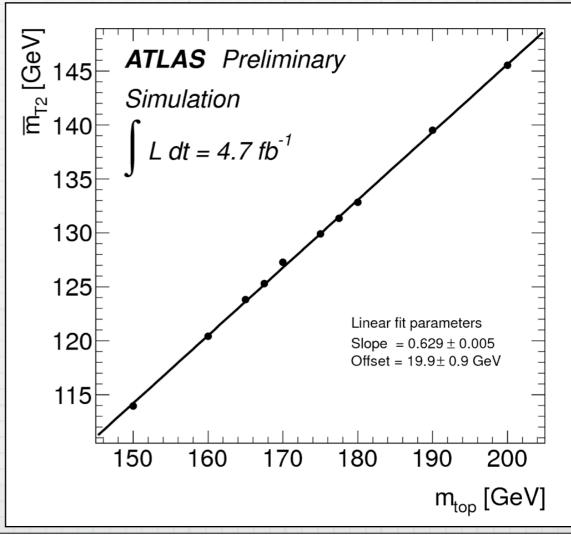


- low JES systematic uncertainty
- bJES dominant effect

- Ongoing effort to constrain MC modeling (radiation/PS/hadronization/colour reconnection) with ATLAS data
  - I/FSR variations in MC reduced by about 50% (arxiv:1203.5015), impact on mt systematic uncertainty being studied

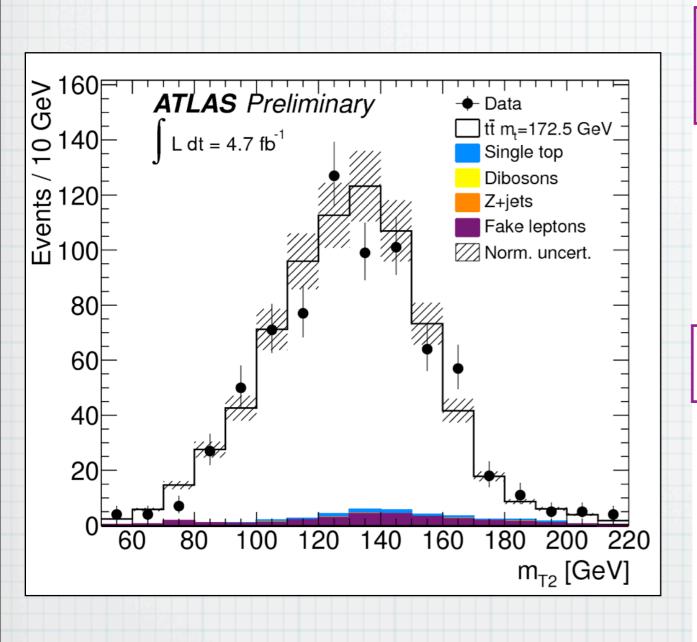
#### Calibration curve (L=4.7 fb-1, e+µ)

ATLAS-CONF-2012-082


- ignature less JES-dependent, but challenging top candidate reconstruction due to neutrinos
  - \* Use m12 (conceived for final states with > 1 undetected particle)

$$m_{\text{T2}}(m_{\text{invis}}) = \min_{\vec{p}_{\text{T}}^{(1)}, \ \vec{p}_{\text{T}}^{(2)}} \left[ \max \left[ m_{\text{T}}(m_{\text{invis}}, \vec{p}_{\text{T}}^{(1)}), m_{\text{T}}(m_{\text{invis}}, \vec{p}_{\text{T}}^{(2)}) \right] \right]$$
Phys.Lett. **B463** (1999) 99–103

$$m_{\mathrm{T}}(m_{\mathrm{invis}}, \vec{p}_{\mathrm{T}}^{(n)}) = \sqrt{m_{\mathrm{vis}}^2 + m_{\mathrm{invis}}^2 + 2(E_T^{\mathrm{vis}}E_T^{\mathrm{invis}} - \vec{p}_{\mathrm{T}}^{\mathrm{vis}} \cdot \vec{p}_{\mathrm{T}}^{(n)})}$$


- \* use calibration curve of m<sub>12</sub> vs m<sub>t</sub> from MC with different true m<sub>t</sub> values to extract m<sub>t</sub> from data
- \* estimator is mean of m12 distribution

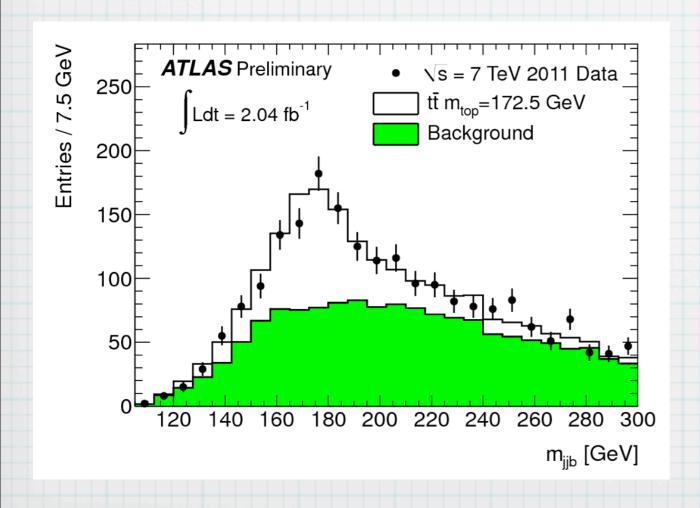


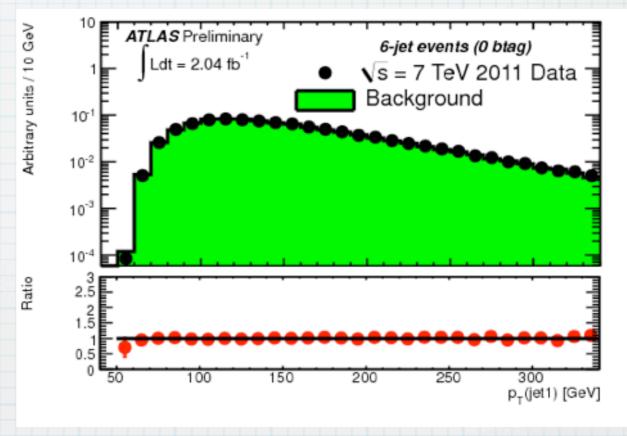


## Results

$$m_{\text{top}} = 175.2 \pm 1.6(\text{stat.})^{+3.1}_{-2.8}(\text{syst.}) \text{ GeV}$$




Good MC/data agreement all over m12


| Source                                    | Uncertainty [GeV] |
|-------------------------------------------|-------------------|
| <i>tī</i> generator model                 | -1.3 / +1.3       |
| Parton shower                             | -0.9 / +0.9       |
| Colour reconnection                       | -1.2/+1.2         |
| ISR/FSR                                   | -0.5 / +0.5       |
| PDF                                       | -0.1 / +0.1       |
| Fakes norm. and shape                     | -0.3 / +0.3       |
| Calibration curve                         | -0.3 / +0.3       |
| Underlying event                          | -0.2/+0.2         |
| Jet energy scale                          | -1.4 / +1.6       |
| b-jet energy scale                        | -1.2/+1.5         |
| Jet energy resolution                     | -0.5 / +0.5       |
| Leptons                                   | -0.1 / +0.2       |
| $E_{\mathrm{T}}^{\mathrm{miss}}$ and jets | -0.1 / +0.1       |
| <i>b</i> -tagging                         | -0.4 / +0.3       |
| Syst. uncertainty                         | -2.8 / +3.1       |
| Stat. uncertainty                         | -1.6/+1.6         |
| Total uncertainty                         | -3.3 / +3.5       |

#### All-had template (L=2.04 fb-1, all-hadronic)

LTLAS-CONF-2012-030

- \* Largest sample, but challenging large QCD bkg
  - \* Top candidates from minimization of  $\chi^2$
- \* bkg modeling from control regions obtained and validated from mixing different hard and soft jet multiplicities ("Evt mixing")



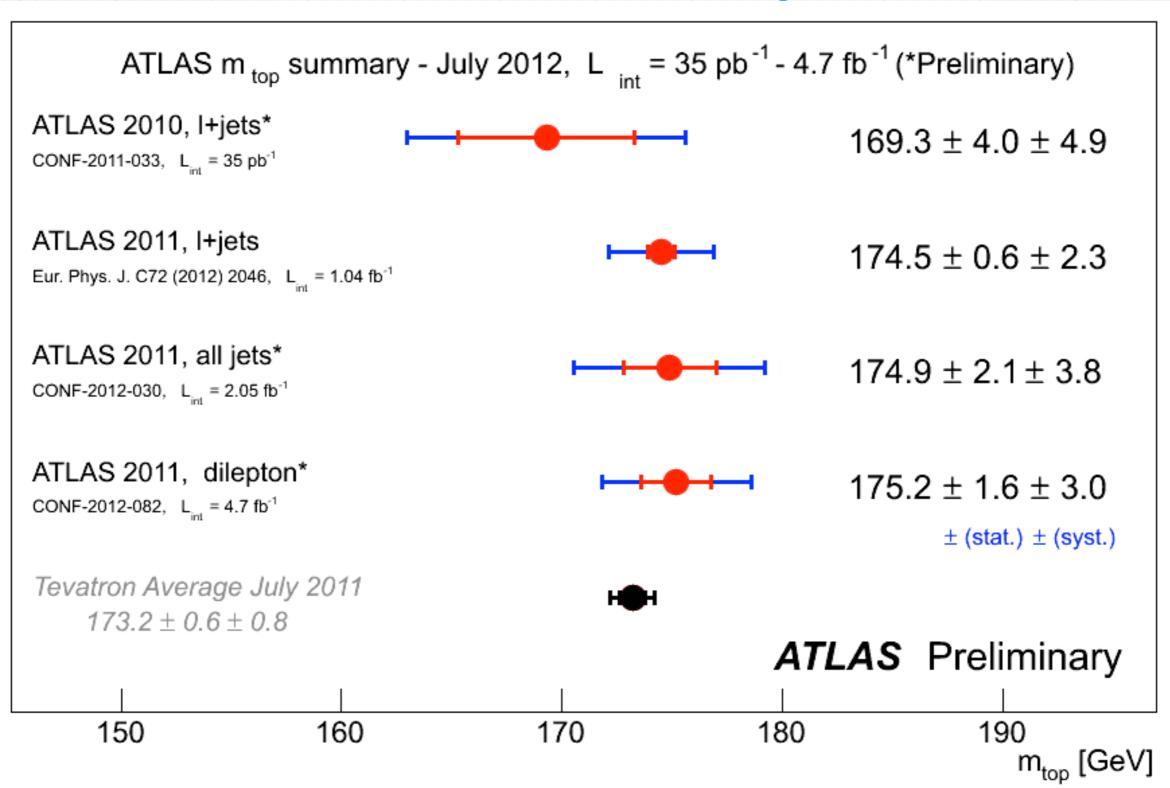


Event mixing models QCD correctly in Control region

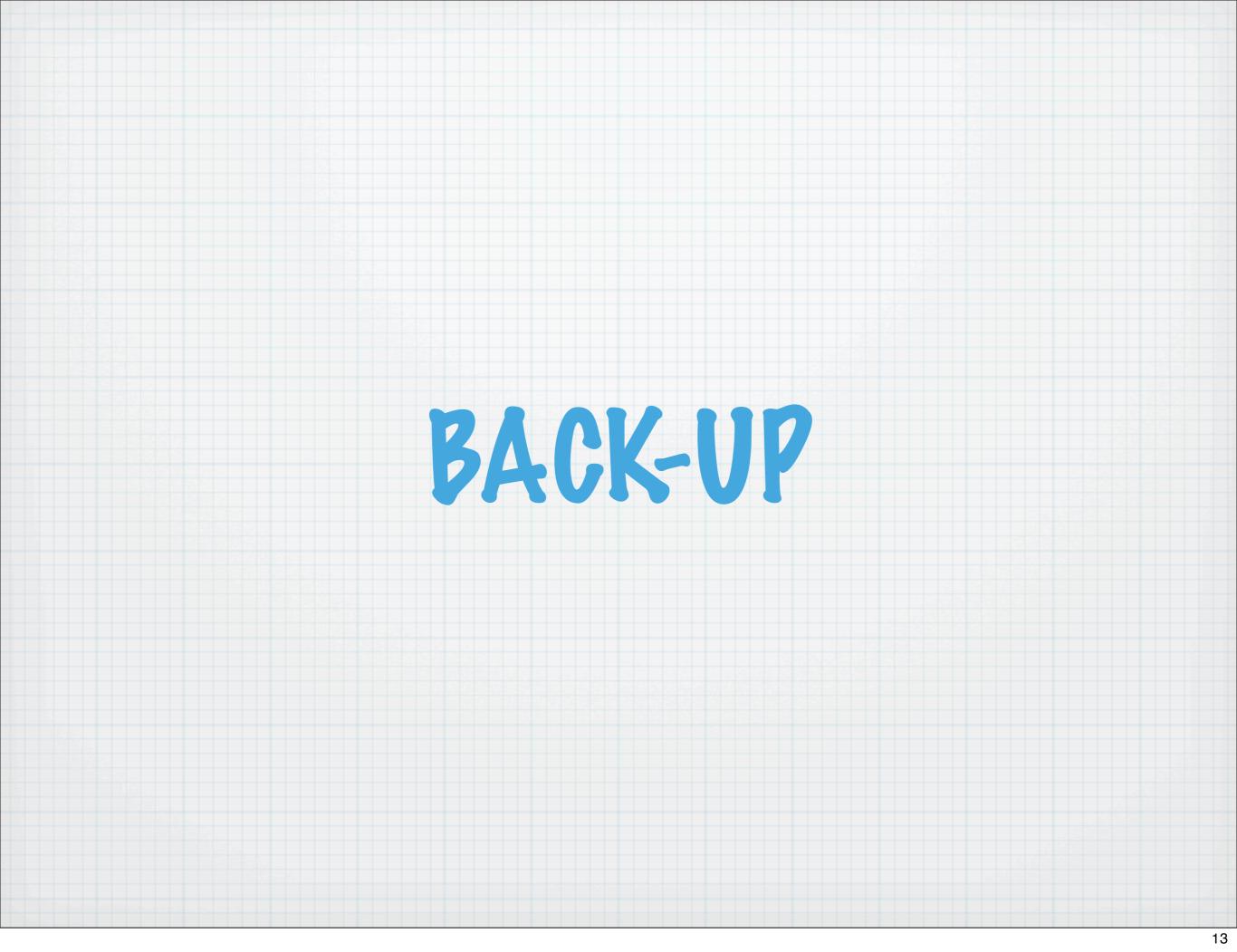
# All-had: results

 $m_t = 174.9 \pm 2.1 \text{ (stat.)} \pm 3.8 \text{ (syst.)} \text{ GeV}$ 

| Source                         | Uncertainty [GeV] |
|--------------------------------|-------------------|
| Method                         | 0.4               |
| Template statistics            | 0.9               |
| MC generator                   | 0.5               |
| ISR/FSR                        | 1.7               |
| PDF                            | 0.6               |
| Background modelling           | 1.9               |
| Jet energy scale               | 2.1               |
| <i>b</i> -jet energy scale     | 1.4               |
| b-tag efficiency scale factors | 0.3               |
| Jet energy resolution          | 0.3               |
| Jet reconstruction efficiency  | 0.2               |
| Total systematic uncertainty   | 3.8               |


1.7x 2-D |+jets

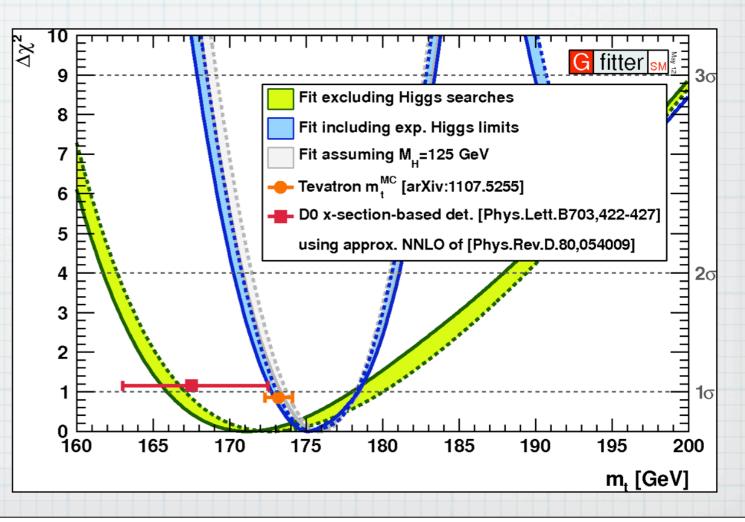
6x 2-D l+jets bkg shape 3x 2-D l+jets


#### Summary

- \* First direct mt measurements at ATLAS obtained from all main channels
  - \* methods in place to reduce impact of JES
  - \* in progress: work to constrain MC modeling with data
- \* Combination with CMS measurements performed (see F.Deliot's talk)
- Also indirect measurement from tt cross-section (2010, 35 pb<sup>-1</sup>):  $m_t = (166.4 + 7.8 -7.3)$  GeV
  - \* interesting as gives access to MS mass

# Summary




\* Stay tuned for more from ATLAS on Top quark mass!



#### What we measure

- \* ...but Top quark is a strong (coloured) object
  - \* what we measure is invariant mass of b-hadron + W system
  - \* basically the pole mass (divergent at high as orders) or better: its proxy from MC simulations

\* luckily can "navigate back" to renormalized mass used in EW fits



# Selections Itjets

 $\begin{array}{c} 1 \text{ Lepton} \\ p_T>20 \text{ ($\mu$) or $E_T>25$ (e) GeV} \\ |_{\eta}|<2.5 \\ \text{Low activity around track in} \\ \text{tracker and calo} \end{array}$ 

24 Jets: Anti-Kt, size 0.4

pt > 25 GeV

Inl < 2.5

Triggers: 18 GeV single  $\mu$ , 20 GeV single electron

Event-level selections:

μ+jets: Etmiss > 20 GeV and Etmiss + Mt(W) > 60 GeV e+jets: Etmiss > 35 GeV and Mt(W) > 25 GeV 1 b-tag with NN-based secondary vertex tagger

# Basic selections et mu

2 Leptons, opp. Q p<sub>T</sub>>20 ( $\mu$ ) or E<sub>T</sub>>25 (e) GeV  $|\eta|<2.5$  Low activity around track in tracker and calo

22 Jets: Anti-K<sub>T</sub>, size 0.4

p<sub>T</sub> > 25 GeV

|η| < 2.5

Triggers: 18 GeV single  $\mu$  OR 20 GeV single electron

Event-level selections: H<sub>T</sub> > 130 GeV

2 b-tags with NN-based secondary vertex tagger, p<sub>T</sub> > 45 GeV

# Selections all-hadronic

25 Jets: Anti-K<sub>T</sub>, size 0.4  $p_T > 55 \text{ GeV}$   $l_\eta l < 4.5$  An additional softer jet with  $p_T > 30 \text{ GeV}$ 

Trigger: 5-jet with pt>30 GeV

Event-level selections: Good lepton veto  $E_{T}^{miss}/\sqrt{(H_T)} < 3 \text{ GeV}^{1/2}$  2 b-tags with NN-based secondary vertex tagger,  $\Delta R > 1.2$ 

### MC samples

- \* Nominal results:
  - \* signal (mt = 172.5 GeV) + mt scan: MC@NLO+Herwig/Jimmy, pdf: CT10
  - \* Z+jets: Alpgen, pdf: CTEQ6L1
  - \* single top: MC@NLO+Herwig/Jimmy for s- and Wt and AcerMC for t-
- \* Systematic uncertainties on MC modeling:
  - \* MC generator: Powheg
  - \* Parton shower/hadronization model: Pythia 6
  - \* I/FSR: AcerMC (tuned with data for 5 fb-1 analysis)
  - \* Colour reconnection/UE: AcerMC+Pythia with different tunes
    - QCD multi-jet and W+jets estimated directly from data

## MC parameters used/1

- \* Nominal results:
  - \* Herwig/Jimmy: AUET2-C10 tuned to ATLAS data, pdf: CT10
  - \* tt x-sec normalized to 166.8 pb using HATHOR
  - \* Z+jets: Alpgen, pdf: CTEQ6L1, k Factor = 1.25
  - \* single top: MC@NLO+Herwig/Jimmy for s- and Wt and AcerMC for t-

# MC parameters used/2

- \* Systematic uncertainties on MC modeling:
  - \* MC generator: Powheg
  - \* Parton shower/hadronization model: Pythia 6
  - \* I/FSR: variations for MRSTMCal MC (LO\*\*) PDF [20651] (AUET2B(LO\*\*) tune
    - \* ISR tuned with full 2011 data based on jet gap fraction in tt dileptonic events (arXiv:1203.5015)
    - \* FSR loosely tuned from inclusive jet shape measurements
  - \* Colour reconnection/UE: AcerMC+Pythia, CTEQ5L, Perugia 2011 and A-Pro and ACR-Pro TeV tuneA+LEP