

- Many new results: >30 talks in parallel session, some reporting 5 analyses...
- Impossible to cover everything...See http://cms.web.cern.ch/org/cms-papers-and-results and https://twiki.cern.ch/twiki/bin/view/AtlasPublic for full list
- Review of theory to follow: remain in your seats!
 Therefore will not discuss model interpretations of the data.
- Will give personal overview of status of experimental searches, focussing on what we know, and what we don't.

Is SUSY a figment of our imagination? Is SUSY hiding or in disguise? Is SUSY dead?

Thanks to the ATLAS and CMS SUSY convenors for their help

SUSY has been expected for a long time, but no trace has been found so far...

Like the plot of the excellent movie "The Lady Vanishes" (Alfred Hitchcock 1938).

A lady is seen, then disappears on a train:

- is she imaginary?
- has she been kidnapped and hidden?
- is she in disguise?
- is she dead?

Why believe in SUSY?

Why believe in SUSY?

- Two big reasons:
- Dark matter strong evidence from astrophysics
 - WIMP miracle fits with SUSY
- Light Higgs need new physics to stabilise mass

$$\Delta m_H^2 = \frac{\left| \lambda_f \right|^2}{16\pi^2} \left[-2\Lambda_{UV}^2 + 6m_f^2 \ln(\Lambda_{UV}/m_f) + \dots \right]$$

Need UV cut-off to get finite mass

$$\Delta m_H^2 = \frac{\lambda_s}{16\pi^2} \left[\Lambda_{UV}^2 - 2m_s^2 \ln(\Lambda_{UV}/m_s) + \ldots \right]$$

SUSY provides correct coupling and number of states for cancellations

SUSY Mass spectrum and cross section

Limits are model dependent – assumptions affect production and decay. Use simplified scenarios for interpretation.

First search in the most obvious places

Search in the most obvious places

- R-parity conservation: neutral light LSP, (DM candidate), SUSY objects produced in pairs.
- Search for production and decay of gluinos and squarks – should have high rates.
- Search for sleptons and gauginos produced directly and also in cascade decays from strong production: lower rate, but cleaner signature.
- E_T^{miss} is key part of signatures.

ATLAS 0-lepton search

2-6 jets + E_{T}^{miss} M_{eff} defines signal regions

Look for squarks and gluinos with direct decays to SM+LSP

Very strong limits from counting experiment.

Dominant background from $Z \rightarrow vv$.

Limits do not apply to stop/sbottom production.

ATLAS-CONF-2012-033

CMS all hadronic search: 7 TeV

≥3 jets, 0-lepton, generic SUSY search, minimal model dependence.

Interpretation in simplified models with only gluino or squark production

 $pp \rightarrow \widetilde{q}\widetilde{q}, \widetilde{q} \rightarrow q\widetilde{\chi}^{0}; m(\widetilde{g}) >> m(\widetilde{q})$

$$H_T = \sum p_T^{jet} > 350 \text{ GeV} \quad (p_T^{jet} > 50 \text{ GeV}, \, \eta < 2.5)$$

 $H_T = -\sum \vec{p}_T^{jet} > 200 \text{ GeV} \quad (p_T^{jet} > 30 \text{ GeV}, \, \eta < 5)$

Excludes: gluinos < 750 GeV squarks<1200 GeV in cMSSM model

 $p \rightarrow \widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow qq\widetilde{\chi}^{0}; m(\widetilde{q}) >> m(\widetilde{g})$

CMS α_T analysis: 2012, 3.9 fb⁻¹

8TeV

Use α_{T} to remove QCD, and bin in H_{T} and number of b jets, with hadronic and leptonic channels.

One interpretation in simplified model: $\tilde{g} \rightarrow t \bar{t} \tilde{\chi}_1^0$

Very interesting generic analysis: covers 0-3 b-tagged jets

- -All hadronic
- -1 muon + jets
- -2 muons + jets
- -Photon + jets

Many powerful constraints

CMS OS-dilepton search: l , $\tilde{\chi}^{\!\scriptscriptstyle{\pm}}$

Search for edge in m(II) from cascade decays

Exclude 5-30 events from new physics

CMS-SUS-11-011

Long decay chains produce dilepton signal

ATLAS- direct slepton/chargino production

Think carefully about predictions

Think carefully about predictions

$$\Delta m_H^2 = \frac{\left|\lambda_f\right|^2}{16\pi^2} \left[-2\Lambda_{UV}^2 + 6m_f^2 \ln(\Lambda_{UV}/m_f) + \dots \right]$$

$$M_H = \frac{\left|\lambda_f\right|^2}{16\pi^2} \left[-2\Lambda_{UV}^2 + 6m_f^2 \ln(\Lambda_{UV}/m_f) + \dots \right]$$

$$\Delta m_H^2 = \frac{\lambda_s}{16\pi^2} \left[\Lambda_{UV}^2 - 2m_s^2 \ln(\Lambda_{UV}/m_s) + \dots \right]$$

Dominant loop is from top: only need third generation squarks to be really light.

3rd generation cross section is reduced (no t/b content in proton): existing limits don't apply!

ATLAS: $\tilde{g} \rightarrow \tilde{t}$, \tilde{b}

Limits on gluino mass ~1 TeV

4-6 jets (≥3 b-jets), no leptons.

Allowed decays depend on masses

8TeV

CMS SS-dilepton and ≥2 b jets

Counting experiment in H_T/ E_T^{Miss} plane: 13 events observed

Sensitive to 3rd generation squarks: gluino mediated, or direct production

CMS τ and $\tau\tau$

Light 3rd generation SUSY could mean light stau -> tau production with jets and missing energy: impressive experimental work to extract signal!

Limits in simplified model

 $7.5 \pm 0.7 \pm 0.9$ expected

Direct Stop searches

Heavy stop > m_t : look for hadronic or leptonic top decays with extra E_T^{miss}

$$\tilde{t}_1 \rightarrow t \, \tilde{\chi}_1^0 \rightarrow Wb \, \tilde{\chi}_1^0$$

Light stop $< m_t$: look for top-like decay via chargino. Signal events contain lower p_T leptons, and subsystem mass below $2m_t$ $m_t > m_{\tilde{t}} > m_{\tilde{t}}$

$$\tilde{t} \rightarrow b \tilde{\chi}_{l}^{\pm} \rightarrow b W^{(*)} \tilde{\chi}_{l}^{0}$$

What

mass?

ATLAS Combined Stop Exclusion

CMS limit on stop cross section

Limits on stop will improve rapidly with more data

Is SUSY hidden?

Is SUSY in the existing searches?

- If SUSY masses are close together, p_T in final state objects is reduced.
- Multiple jets, little E_T^{miss}
- Signal looks much more like QCD
- May get signal from hard ISR jets, but theoretical errors are difficult to control
- Compressed SUSY models, stealth SUSY models....

ATLAS 1-lepton: $\tilde{g} \rightarrow \tilde{q} \tilde{q}^*$ $\tilde{\chi}_{l}^{\pm} \rightarrow W^{\pm} \tilde{\chi}_{l}^{0}$

3-4 jets+ lepton + Etmiss

Search for strong production of squarks and gluinos. Use cascade decays including 3 or 4 jets and one lepton.

To reach small mass differences need low p_T cuts. Hard jets from ISR can help acceptance – but beware systematics

Low p_T selections push towards smaller Δm

Soft lepton selection (<25/20 GeV e/mu)

Exclude m_{sq}=m_{gl}<1200 GeV in MSUGRA

ATLAS-CONF-2012-041

CMS - Stealth SUSY

arXiv:1105.5135

SUSY requires hidden sector to break supersymmetry

Light hidden sector particles can mediate decays to many low p_T objects

Rich phenomenology: can include many b-jets, photons, γjj resonances, long-lived particles etc

CMS-PAS-SUS-12-014

Search in events with $\gamma\gamma + \leq 4$ jets and large total energy S_T

New search

@ICHEP

ATLAS – Long-lived particles

Small ∆m: SUSY particle decays in flight: look for disappearing tracks

AMSB models: $\tilde{\chi}^{\scriptscriptstyle \pm}_{\scriptscriptstyle l} \to \tilde{\chi}^{\scriptscriptstyle 0}_{\scriptscriptstyle l} \pi^{\scriptscriptstyle \pm}$

Signal: high pT isolated tracks ≤ 5 hits in TRT

Exclude: m(chargino) < 90 GeV, $0.2 < \tau < 90$ ns m(chargino) < 118 GeV $1 < \tau < 2$ ns

Very long lifetime: SUSY particle leaves detector - look for slow tracks

Signal: high mass from time-of-flight

Exclude:

- stable sleptons < 297 GeV
- staus (GMSB) <310 GeV

Is SUSY hidden by RPV or GMSB?

- Missing energy-based searches rely on neutral light LSP prediction. If R-parity violated, we can evade these limits. (see eg arxiv:1110.6670)
- Expect prompt decays of LSP, or long-lived heavy particle signatures.

Tevatron top forward backward asymmetry

CMS multi-lepton search

Sensitive to RPC and RPV, and gravitino and neutralino LSP

$$S_T = H_T + E_T^{Miss} + \sum_{Leptons} p_T$$

RPV events have less missing energy: LSP can decay to SM particles.

Look for RPV couplings giving prompt decays (<100µm)

Limit above on leptonic RPV scenario Analysis also sensitive to many other scenarios:

ios:
$$\tilde{g}, \tilde{q} \to \tilde{\chi}_{l}^{0} + X$$

$$\tilde{\chi}_{l}^{0} \to \tilde{l} \ l$$
example
$$\tilde{l} \to l \ \tilde{G}$$

28

arXiv:1204.5341

General Gauge Mediation scenario. Look for γγ+jet+E_Tmiss

Set limits on squark and gluino masses

Exclusion is model dependent: in Wino-LSP scenario, chargino decays without photons suppress signal

$$\tilde{\chi}_{l}^{\pm} \rightarrow \tilde{\chi}_{l}^{0} + X \qquad \tilde{\chi}_{l}^{0} \rightarrow \gamma \, \tilde{G}$$

$$\tilde{\chi}^0 \rightarrow \gamma \, \tilde{G}$$

Photon

$$\tilde{\chi}_{\rm l}^{\pm} \rightarrow W + X$$

$$\tilde{\chi}_{l}^{\pm} \rightarrow W + X$$
 $M(\tilde{\chi}_{l}^{\pm}) \approx M(\tilde{\chi}_{l}^{0})$ No photon

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS12018

Is SUSY Dead?

Is SUSY Dead?

- Under attack from all sides, but not dead yet.
- The searches leave little room for SUSY inside the reach of the existing data.
- But interpretations within SUSY models rely on many simplifying assumptions, and so care must be taken when making use of the limit plots
- Plausible "natural" scenarios still not ruled out: stop and/or RPV scenarios have few constraints.
- There is no reason to give up hope of finding SUSY at the LHC.

Maybe a happy ending....?

Maybe a happy ending....?

The lady is found alive and well in the final scene...

Larger versions in

backup slides

Both experiments provide nice search summaries

Backups

^{*}Only a selection of the available mass limits on new states or phenomena shown

CMS results summary

CMS CMSSSM summary

ATLAS multi-jet search

Look at high jet multiplicities, softer jets

Exclude cross-sections ~20fb (10x higher than 0-lepton), but signal would be invisible in standard search

ATLAS-CONF-2012-037

For simple model with
$$\tilde{g}+\tilde{g} \to \left(t+\bar{t}+\tilde{\chi}_1^0\right)+\left(t+\bar{t}+\tilde{\chi}_1^0\right)$$
 exclude m_{gl}< 880 GeV $_{_{40}}$

ATLAS- direct slepton/chargino production

Select 2 leptons and E_T^{miss}. Use m_{T2} variable for pair production with semi-invisible decays

Sensitivity to weak production processes still limited, due to lower cross-section.

Best limit on charginos

ATLAS direct chargino/gaugino search

Select 3 leptons and E_Tmiss.

- Split into Z-enriched and Zdepleted regions
- High p_T lepton selection to enhance signals with large mass splittings
- Simplified model: degenerate wino-type charginos/neutralinos (apart from bino LSP)
- Constraint >200 GeV with model assumptions.

Signal expected from chargino cascade decays in simplified model

CMS SS-dilepton and >=2 b jets 7 TeV

Counting experiment in H_T/ E_T^{Miss} plane: 10 events observed

Sensitive to 3rd generation squarks: gluino mediated, or direct prodution

Include e, μ, τ.

Counting experiment in H_T, E_T^{miss} plane

Interpret in CMSSM:

Exclude 6.2-16.9 events from new physics Implies m(chargino)>200 GeV in CMSSM scenario

arXiv:1205.6615

Is SUSY hidden by GGM? CMS yy 7 TeV

General Gauge Mediation scenario. Look for γγ+jet+E_Tmiss

Exclusion is model dependent: in Wino-LSP scenario, chargino decays without photons suppress signal

$$\tilde{\chi}_{l}^{\pm} \rightarrow \tilde{\chi}_{l}^{0} + X \qquad \tilde{\chi}_{l}^{0} \rightarrow \gamma \, \tilde{G}$$

$$\tilde{\chi}_1^0 \rightarrow \gamma \, \tilde{G}$$

Photon

$$\tilde{\chi}_{1}^{\pm} \longrightarrow W + X$$

$$\tilde{\chi}_{l}^{\pm} \rightarrow W + X$$
 $M(\tilde{\chi}_{l}^{\pm}) \approx M(\tilde{\chi}_{l}^{0})$ No photon 500

ATLAS – Disappearing track

AMSB models produce almost degenerate chargino and LSP. Chargino long-lived, decays to LSP+ soft pion

Look for high pT isolated tracks which disappear leaving <= 5 hits in TRT

ATLAS-CONF-2012-034

Background from interacting tracks and bad reconstruction. Fit background + signal model. Best fit has zero signal.

Constraints on chargino mass and lifetime: Exclude: m < 90 GeV, $0.2 < \tau < 90$ ns

m< 118 GeV $1 < \tau < 2$ ns

ATLAS – long lived particles

Heavy stable particles reach calo/muon system with a delay depending on their mass. ATLAS has excellent time resolution: measure β

Trigger using muon system or ETmiss. Look for 2 tracks with low β using calo and muon system timing.

Exclude:

- stable sleptons < 297 GeV
- staus (GMSB) <310 GeV

ATLAS RPV: R-hadrons

Measure dE/dx and p to infer mass – use pixel ToT

Each mass produces a different band for energy loss vs momentum.

Exclude:

generic R-hadrons < 985 GeV Stop-R-hadrons <683 GeV Sbottom-R-hadrons <612 GeV + model dependent limits

R-hadrons contain SUSY+SM objects. Behave like heavy mesons. Can change charge by interactions in detector.

ATLAS Direct Stop – 0 lepton

$$\tilde{t}_1 \rightarrow t \, \tilde{\chi}_1^0 \rightarrow bjj \, \tilde{\chi}_1^0$$

J1>130 GeV J2-6>30 GeV Etmiss > 150 GeV No leptons $M_{T}(b,Etmiss)>M_{T}$

Signal to noise much worse than inc. searches: optimise cuts to extract signal under large ttbar backgroun.

300

Single Top

(V) + jets

Bkg Syst Error

 $(m_{s}, m_{s}) = (400, 1) \text{ GeV}$

ATLAS Preliminary

L dt = $4.7 \text{ fb}^{-1}, \sqrt{s} = 7 \text{ TeV}$

500

E_T^{miss} [GeV]

600

SM Exp. +

Data 2011

400

Require good match to top mass. Look for tt pairs in hadronic decays with Etmiss from LSP. Exclude region between 350<M(stop)<500 GeV for low LSP masses. No constraint for M(LSP)>100 GeV

ATLAS Direct Stop – 1 lepton

$$\tilde{t}_1 \rightarrow t \, \tilde{\chi}_1^0 \rightarrow Wb \, \tilde{\chi}_1^0$$

tt pairs with one semi-leptonic decay. Stop decay to top + LSP

	-1 1					
Regions	SR A	SR B	SR C	SR D	SR E	
tt $tt + V$, single top V +jets, VV Multijet	36 ± 5 2.9 ± 0.7 2.5 ± 1.3 $0.4^{+0.4}_{-0.4}$	27 ± 4 2.5 ± 0.6 1.7 ± 0.8 $0.3^{+0.3}_{-0.3}$	11 ± 2 1.6 ± 0.3 0.4 ± 0.1 $0.3^{+0.3}_{-0.3}$	4.9 ± 1.3 0.9 ± 0.3 0.3 ± 0.1 $0.3^{+0.3}_{-0.3}$	1.3 ± 0.6 0.4 ± 0.1 0.1 ± 0.1 $0.0^{+0.3}_{-0.0}$	
Total background Signal benchmark 1 (2) Observed events	42 ± 6 25.6 (8.8) 38	31 ± 4 $23.0 (8.1)$ 25	13 ± 2 17.5 (6.9) 15	6.4 ± 1.4 13.5 (6.2) 8	1.8 ± 0.7 7.1 (4.5) 5	
p_0 -values	0.5	0.5	0.32	0.24	0.015	
Obs. (exp.) $N_{\text{bayond-SM}} <$	15.1 (17.2)	10.1 (13.8)	10.8 (9.2)	8.4 (7.0)	8.2 (4.6)	

Some sensitivity for M(LSP) up to 150 GeV

Table 1: Selection requirements defining the SR A - E.

	1				
Requirement	SR A	SR B	SR C	SR D	SR E
$E_{\rm T}^{\rm miss}$ [GeV] >	150	150	150	225	275
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}}~[{\rm GeV}^{1/2}]>$	7	9	11	11	11
$m_{\rm T} [{\rm GeV}] >$	120	120	120	130	140
<u>-</u>	•	•	•		

ATLAS Direct Stop – 2 lepton

$$\tilde{t}_1 \rightarrow t \, \tilde{\chi}_1^0 \rightarrow Wb \, \tilde{\chi}_1^0$$

2 semileptonic top decays – use MT2 as discriminating variable

	tī CR	tī CR
Process	DF	SF
$t\bar{t}$	68 ± 11	39 ± 11
$t\bar{t}W + t\bar{t}Z$	0.37 ± 0.07	0.20 ± 0.05
Wt	2.7 ± 1.0	1.8 ± 0.6
Z/γ^* +jets	-	3.5 ± 1.4
Fake leptons	0.4 ± 0.3	0.5 ± 1.6
Diboson	0.49 ± 0.14	0.10 ± 0.05
Total non- <i>tī</i>	4.0 ± 1.5	6.1 ± 3.7
Total expected	72 ± 11	45 ± 12
Data	79	53

$m_t \gtrsim m_{\tilde{t}_1} \text{ATLAS light stop} - 2 \text{ lepton}$ $\tilde{t} \rightarrow b \tilde{\chi}_1^{\pm} \rightarrow b W^{(*)} \tilde{\chi}_1^0$

$$\tilde{t} \rightarrow b \tilde{\chi}_{l}^{\pm} \rightarrow b W^{(*)} \tilde{\chi}_{l}^{0}$$

Light stop produces excess of low p_T leptons in events which look like top pairs decaying semi-leptonically. Look directly at p_{T} (lepton) and ET_{miss}. Low acceptance but clean.

Total	$440 \pm 21 \pm 43$
Data	431
$\sigma_{ m vis}$ (exp. limit) [fb]	22.0
$\sigma_{ m vis}$ (obs. limit) [fb]	21.0
$m(\tilde{t}, \tilde{\chi}_1^0) = (112, 55) \text{ GeV}$ $m(\tilde{t}, \tilde{\chi}_1^0) = (160, 55) \text{ GeV}$	322 ± 13
$m(\tilde{t}, \tilde{\chi}_1^0) = (160, 55) \text{ GeV}$	76.6 ± 4.3

ATLAS light stop – kinematic search

Signal: 1 or 2 leptons and b jet tag + "jets as expected from tt.

Construct subsystem mass – peaks at 2m(t), lower for stop.

Limits depend on assumptions on chargino mass.

ATLAS-CONF-2012-070

Process	1LSR	2LSR1	2LSR2	
Тор	$24 \pm 3 \pm 5$	$89 \pm 6 \pm 10$	$36 \pm 2 \pm 5$	
W+jets	$6\pm1\pm2$	n/a	n/a	
Z+jets	$0.5 \pm 0.3 \pm 0.3$	$11\pm 4\pm 3$	$3\pm1\pm1$	
Fake leptons	$7\pm1\pm2$	$12\pm5\pm11$	$6\pm4\pm4$	
Others	$0.3 \pm 0.1 \pm 0.1$	$2.7 \pm 0.9 \pm 0.7$	$0.9 \pm 0.2 \pm 0.5$	
Total SM	$38 \pm 3 \pm 7$	$115 \pm 8 \pm 15$	$46 \pm 4 \pm 7$	
Data	50	123	47	
$m_{\tilde{t}_1} = 170 \text{ GeV}, m_{\tilde{\chi}_1^0} = 70 \text{ GeV}$	$26 \pm 2 \pm 6$	$57 \pm 3 \pm 6$	$36 \pm 2 \pm 4$	
$m_{\tilde{t}_1} = 180 \text{ GeV}, m_{\tilde{\chi}_1^0} = 20 \text{ GeV}$	$20\pm2\pm4$	$41\pm3\pm5$	$27\pm2\pm3$	
	95% CL upper limits			
σ_{vis} (expected) [fb]	4.2	9.3	4.6	54
σ_{vis} (observed) [fb]	6.1	11	5.2	

What is α_{T} ?

$$\alpha_{\mathrm{T}} = \frac{E_{\mathrm{T}}^{\mathrm{j}_2}}{M_{\mathrm{T}}}$$

 $\alpha_{\rm T} = \frac{E_{\rm T}^{\rm j_2}}{M_{\rm T}}$ For well balanced dijet systems, $\alpha_{\rm T} = 0.5$

For an multi-jet system, jets are merged to make an equivalent dijet system such that difference in E_T of two systems (ΔH_T) is minimum.

$$\alpha_{\mathrm{T}} = \frac{1}{2} \cdot \frac{H_{\mathrm{T}} - \Delta H_{\mathrm{T}}}{\sqrt{H_{\mathrm{T}}^2 - H_{\mathrm{T}}^2}}$$