Ultra-High Energy Neutrinos at the Pierre Auger Observatory

Roger Clay
University of Adelaide

For the Pierre Auger Collaboration

arXiv:1107.4809
ArXiv:1107.4804
Science, 318, 938 (2007)
We now know in great detail about cosmic rays above $\sim 1 \text{ EeV} (10^{18} \text{ eV})$.

BUT we don't know exactly where they come from – they are charged and so get deflected in intergalactic magnetic fields.
The cosmic ray energy spectrum shows a cut-off as predicted: GZK cut-off. We assume that this is correct.

The GZK cut-off specifically refers to photo-pion production from cosmic ray protons and astrophysical (blue shifted to gammas) background photons.

\[\Pi^+ \text{ decays to } 3 \text{ neutrinos plus a positron}.\]

The resulting neutrinos are NEITHER absorbed nor deflected. They may point to the cosmic ray source.
Background Photon Spectrum

Fig. 6. The energy spectrum of the CMB [23] and the CIB in the IR/optical [48] and radio [54] range at $z = 0$. The thin dashed line shows our extrapolation to UV energies.
Predicted Neutrino Spectrum

Figure 7. Effects of various compositions on neutrino fluxes for all flavors. We present the cases of (i) a pure proton injection assuming a dip transition model (black solid), (ii) a proton dominated Galactic type mixed composition (pink dotted), (iii) pure iron composition (blue dashed) and (iv) the iron rich low $E_{\text{p, max}}$ model (red dash-dotted).
Interactions to search for:

Charged Current

\[\nu_e \rightarrow \text{hadronic jet} \]

Neutral Current

\[\nu_x \rightarrow \text{hadronic jet} \]

FIG. 2. Different types of atmospheric showers induced by neutrinos.
Possible event types: 'down going' and 'Earth-skimming'.

FIG. 1. Pictorial representation of the different types of showers induced by protons, heavy nuclei and “down-going” (DG) as well as “Earth-skimming” (ES) neutrinos. The search for down-going showers initiated deep in the atmosphere is the subject of this work.

See:
arXiv:1107.4809
ArXiv:1107.4804
Science, 318, 938 (2007)
We can use expected physical properties of the showers – content, timing, footprint shape etc. To build up a set of criteria to be satisfied by neutrino showers.
A 'normal' event.

See http://auger.colostate.edu/ED/
Detector station (10 m² water Cherenkov tank) signals

Close to the shower core

At a large core distance.
Developing Neutrino Search Criteria

Search Criteria:

Table 1: Criteria to select Earth-skimming ν_τ and down-going ν. See text for details.

<table>
<thead>
<tr>
<th></th>
<th>Earth-skimming</th>
<th>Down-going</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclined Showers</td>
<td>N° of Stations ≥ 3</td>
<td>N° of Stations ≥ 4</td>
</tr>
<tr>
<td></td>
<td>$L/W > 5$</td>
<td>$L/W > 3$</td>
</tr>
<tr>
<td></td>
<td>$0.29 \frac{m}{\text{ns}} < V < 0.31 \frac{m}{\text{ns}}$</td>
<td>$V < 0.313 \frac{m}{\text{ns}}$</td>
</tr>
<tr>
<td></td>
<td>RMS$(V) < 0.08 \frac{m}{\text{ns}}$</td>
<td>RMS(V) $\frac{V}{\text{ns}} < 0.08$</td>
</tr>
<tr>
<td></td>
<td>$\theta_{\text{rec}} > 75^\circ$</td>
<td>Fisher discriminator based on AoP</td>
</tr>
<tr>
<td>Young Showers</td>
<td>ToT fraction > 0.6</td>
<td></td>
</tr>
</tbody>
</table>
Rather strange directional exposure

The resulting upper limits

To Look for Specific Point Sources
Centaurus A (NGC 5128) is a 'nearby' likely source. The limits are tightening for its models also.

Table 2: Expected number of events for two diffuse neutrino flux models and two CenA neutrino flux models.

<table>
<thead>
<tr>
<th>Diffuse flux model</th>
<th>Earth-skimming</th>
<th>Down-going</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cosmogenic</td>
<td>0.71</td>
<td>0.14</td>
</tr>
<tr>
<td>Exotic</td>
<td>3.5</td>
<td>0.97</td>
</tr>
<tr>
<td>CenA flux model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuoco et al.</td>
<td>0.10</td>
<td>0.02</td>
</tr>
<tr>
<td>Kachelriess et al.</td>
<td>0.006</td>
<td>0.001</td>
</tr>
</tbody>
</table>
Summary
The Pierre Auger Observatory:

Has measured fundamental astrophysical quantities (directions, composition, spectrum) at energies above $\sim 10^{18}$ eV (to $> 10^{20}$ eV).

We still have not identified specific sources and neutrino studies seem to offer a way of doing directional astrophysics for that.

The energy spectrum seems to show a GZK cut-off – neutrino studies should confirm or deny this.

Auger is competitive in UHE neutrino studies of the Southern skies.
Thanks