

Pierre Auger Observatory studying the universe's highest energy particles

Ultra-High Energy Neutrinos at the Pierre Auger Observatory

Roger Clay University of Adelaide

For the Pierre Auger Collaboration

See: Pierre Auger Collaboration, ApJ Letters, In press arXiv:1107.4809 ArXiv:1107.4804 Science, 318, 938 (2007) ICHEP July 2012

Energy Spectrum

Pierre Auger Observatory studying the universe's highest energy particles

We now know in great detail about cosmic rays above ~1 EeV (10¹⁸ eV).

BUT we don't know exactly where they come from – they are charged and so get deflected in intergalactic magnetic fields.

Arrival Directions

Composition

studying the universe's highest energy particles

The cosmic ray energy spectrum shows a cut-off as predicted: GZK cut-off. We assume that this is correct.

The GZK cut-off specifically refers to photo-pion production from cosmic ray protons and astrophysical (blue shifted to gammas) background photons.

Π⁺ decays to 3 neutrinos plus a positron.

The resulting neutrinos are NEITHER absorbed nor deflected. They may point to the cosmic ray source.

Observatory st energy particles

Ahlers et al. Astroparticle Phys. 34, 106-115, 2010

Fig. 6. The energy spectrum of the CMB [23] and the CIB in the IR/optial [48] and radio [54] range at z = 0. The thin dashed line shows our extrapolation to UV energies.

Figure 7. Effects of various compositions on neutrino fluxes for all flavors. We present the cases of (i) a pure proton injection assuming a dip transition model (black solid), (ii) a proton dominated Galactic type mixed composition (pink dotted), (iii) pure iron composition (blue dashed) and (iv) the iron rich low $E_{p,max}$ model (red dash-dotted).

Kotera, Allard and Olinta arXiv:1009.1382

studying the universe's highest energy particles

Interactions to search for:

FIG. 2. Different types of atmospheric showers induced by neutrinos.

the universe's highest energy particles

studying the universe's highest energy particles

studying the universe's highest energy particles

Possible event types: 'down going' and 'Earth-skimming'.

FIG. 1. Pictorial representation of the different types of showers induced by protons, heavy nuclei and "down-going" (DG) a well as "Earth-skimming" (ES) neutrinos. The search for down-going showers initiated deep in the atmosphere is the subject of this work.

See: arXiv:1107.4809 ArXiv:1107.4804 Science, 318, 938 (2007)	ICHEP July 2012	and the second s
--	-----------------	--

FIG. 5. Upper panel: sketch of an inclined shower induced by a hadron interacting high in the atmosphere. The EM component is absorbed and only the muons reach the detector. *Lower panel*: deep inclined shower. Its early region has a significant EM component at the detector level.

Pierre Auger Observatory

studying the universe's highest energy particles

We can use expected physical properties of the showers – content, timing, footprint shape etc. To build up a set of criteria to be satisfied by neutrino showers.

studying the universe's highest energy particles

A 'normal' event.

See http://auger.colostate/edu/ED/

Detector station (10 m² water Cherenkov tank) signals

Pierre Auger Observatory

studying the universe's highest energy particles

Close to the shower core

At a large core distance.

studying the universe's highest energy particles

Developing Neutrino Search Criteria

Table 1: Criteria to select Earth-skimming ν_{τ} and downgoing ν . See text for details.

	Earth-skimming	Down-going
	N° of Stations ≥ 3	N° of Stations ≥ 4
	L/W > 5	L/W > 3
Inclined	$0.29 \frac{m}{ns} < V < 0.31 \frac{m}{ns}$	$V < 0.313 \frac{m}{ns}$
Showers	$RMS(V) < 0.08 \frac{m}{ns}$	$\frac{\text{RMS}(V)}{V} < 0.08$
	-	$\theta_{rec} > 75^{\circ}$
Young	ToT fraction>0.6	Fisher discriminator
Showers		based on AoP

Search Criteria:

studying the universe's highest energy particles

studying the universe's highest energy particles

Rather strange directional exposure

The resulting upper limits

To Look for Specific Point Sources

Single flavour neutrino limits (90% CL)

studying the universe's highest energy particles

Centaurus A (NGC 5128) is a 'nearby' likely source. The limits are tightening for its models also.

Centaurus A - Single flavour neutrino limits (90% CL) 10^{-4} LUNASKA 2008 s-¹ Auger Downward-going [GeV cm⁻² Auger Earth-skimming IceCube 2011b 10 Cuoco 2008 Щ й 10 ш k_{Ps}. 10 Kachelriess 2009 10⁻¹⁰ 10¹⁵ 10²² 10¹⁶ 10¹⁸ 10²³ 10¹⁹ 10^{20} E, [eV]

Table 2: Expected number of events for two diffuse neutrino flux models and two CenA neutrino flux models.

Diffuse flux model	Earth-skimming	Down-going
Cosmogenic	0.71	0.14
Exotic	3.5	0.97
CenA flux model	Earth-skimming	Down-going
CenA flux model Cuoco et al.	Earth-skimming 0.10	Down-going 0.02

Summary The Pierre Auger Observatory:

studying the universe's highest energy particles

Has measured fundamental astrophysical quantities (directions, composition, spectrum) at energies above $\sim 10^{18}$ eV (to > 10^{20} eV).

We still have not identified specific sources and neutrino studies seem to offer a way of doing directional astrophysics for that.

The energy spectrum seems to show a GZK cut-off neutrino studies should confirm or deny this.

Auger is competitive in UHE neutrino studies of the Southern skies.

studying the universe's highest energy particles

Thanks