ICHEP 2012 July 4-11, Melbourne, Australia

Charmless B decays and CP violation at BABAR

Branching fractions, CP asymmetries and polarizations in Amplitude analyses and CP violation in B \rightarrow 3K modes

Université Pierre et Marie Curie (Paris)

On behalf of the **BABAR** collaboration

General introduction

- All the decays presented here are $b \rightarrow q\bar{q}s$ transitions
- Standard Model (SM): their leading decay amplitude is

⇒ CP violation (CPV) only by CKM phase same as in b→c \bar{c} s transitions direct CPV ~ 0, mixing induced CPV ~ sin 2 β

- New physics (NP): another virtual particle in the loop (?)
- This can result, e.g., in:
 - New CP violating phases (?)
 ⇒ observable through CP asymmetries (≠ cc̄s modes)
 - Enhanced branching fractions wrt SM expectations
 - Altered polarizations in final state (e.g. in B \rightarrow VV decays)

All these observables: probes for new physics!

But... we observe hadrons and not quarks \Rightarrow QCD predictions play a crucial role precise theoretical prediction + precise measurement = powerful test of the SM

Common analysis techniques

Good charged particle ID (in particular K/π)

up to few GeV/co.78

1.5 2 2.5 3 3.5 4 4.5 5 p(GeV/c)

Background characterization:

→ Mainly continuum: $e^+e^- \rightarrow q\bar{q}$ (q = u,d,s,c). Suppression by multi-variable classifiers based on event-shape variables:

Fisher discriminant, Neural Networks (NN)...

→ Background from B decays: classified by kinematic and topological properties

Variables are often combined to a likelihood function, used in a maximum likelihood fit for signal/background separation and to measure parameters of interest

Branching fractions, CP asymmetries and polarizations in

 $B^0 \rightarrow \rho^0 K^{*0}$, $f_0 K^{*0}$ and $\rho^- K^{*+}$ decays

Different K*0 states: K*(892), $(K\pi)_0^*$ s-wave, K*₂(1430)⁰

arXiv:1112.3896 [hep-ex], Phys.Rev.D85:072005, 2012.

full BaBar dataset (467M BB pairs) twice the previous analysis

Introduction

 $B^0 \rightarrow \rho^0/f_0 K^{*0}$ and $\rho^- K^{*+}$

"Polarization puzzle" for $B \rightarrow VV$ modes

Naïve expectation from helicity arguments:

longitudinal polarization fraction $(f_L) \sim 1$

$$B \rightarrow \rho \rho \text{ has } f_L > 0.9$$

but other b \rightarrow s penguin VV states have $f_L \sim 0.5$

(partially integrated) decay rate ∝

$$\frac{1-f_L}{4}\sin^2\theta_{K^*}\sin^2\theta_{\rho} + f_L\cos^2\theta_{K^*}\cos^2\theta_{\rho}$$

helicity angles in the K*/p decay planes

- \Rightarrow angles give access to f_L (in VV channels)
- The modes f_0/ρ^0 $(K\pi)^*_0$ and $f_0K^*_2$ (1430)⁰ are studied for the first time
- QCDF predicts BF, f_L , and A_{CP} for $B \rightarrow \rho K^*$

Analysis

- Reconstruction: $\rho^{0(-)} \to \pi^{+(0)} \pi^{-}$ and $f_0(980) \to \pi^{+} \pi^{-}$; $K^{*0(+)} \to K^{+} \pi^{-(0)}$
- Maximum likelihood fit with 7 variables: m_{ES} , ΔE, Fisher, $m_{\pi\pi}$, $m_{K\pi}$, $\cos\theta_{\rho}$, $\cos\theta_{K^*}$ VV modes only
- $m_{K\pi}$ in 2 regions:
 - Low Mass Region [0.75, 1.0], contains **K***(892)
 - High Mass Region [1.0, 1.55], contains $(K\pi)^*_0$, $K^*_2(1430)^0$

Analysis

- Reconstruction: $\rho^{0(-)} \to \pi^{+(0)} \pi^{-}$ and $f_0(980) \to \pi^{+} \pi^{-}$; $K^{*0(+)} \to K^{+} \pi^{-(0)}$
- Maximum likelihood fit with 7 variables: m_{ES} , ΔE , Fisher, $m_{\pi\pi}$, $m_{K\pi}$, $\cos\theta_{\rho}$, $\cos\theta_{K^*}$ VV modes only
- $m_{K\pi}$ in 2 regions:
 - Low Mass Region [0.75, 1.0], contains **K***(892)
 - High Mass Region [1.0, 1.55], contains $(K\pi)^*_0$, $K^*_2(1430)^0$

$\frac{\mathbf{HMR}}{\mathbf{f}^{0}/\rho^{0}\left(\mathbf{K\pi}\right)^{*}{}_{0}}$

Two stage fit in HMR: extract **sWeights** for $(K\pi)^*_0$ and $K^*_2(1430)$ then fit $m_{\pi\pi}$ to ρ , f_0

Results

Mode	Y	S	${\mathcal B}$	U.L.	f_L	${\cal A}_{ m ch}$
	(events)	(σ)	(10^{-6})	(10^{-6})		
$\rho^0 K^*(892)^0$	376 ± 37	6.0	$5.1 \pm 0.6^{+0.6}_{-0.8}$		$0.40 \pm 0.08 \pm 0.11$	$-0.06 \pm 0.09 \pm 0.02$
$ ho^0(K\pi)_0^{*0}$	$1045 \pm 36 \pm 118$	6.3	$31 \pm 4 \pm 3$	★…	• • •	• • • •
$f_0 K^* (892)^0$	220 ± 23	9.8	$5.7 \pm 0.6 \pm 0.4$	★…	• • •	$+0.07 \pm 0.10 \pm 0.02$
$f_0(K\pi)_0^{*0}$	$88 \pm 19 \pm 10$	3.0	$3.1 \pm 0.8 \pm 0.7$	★…	• • •	
$f_0 K_2^* (1430)^0$	$134 \pm 14 \pm 23$	4.3	$8.6 \pm 1.7 \pm 1.0$	★ ···	• • •	• • • •
$\rho^- K^* (892)^+$	167 ± 27	5.1	$10.3 \pm 2.3 \pm 1.3$	★ ···	$0.38 \pm 0.13 \pm 0.03$	$+0.21 \pm 0.15 \pm 0.02$
$\rho^{-}(K\pi)_{0}^{*+}$	221 ± 74	2.8	$32 \pm 10 \pm 6$	<48		

★ 1st observation ★ 1st evidence

consistent with 0.5 and with other penguin modes

(wrt final state K[±]) consistent with 0

- Need more data to check consistence of f_L hierarchy with QCDF prediction
- BR of modes with $(Kπ)^*_0$ allow to favor predictions from QCDF over pQCD.

B → 3K modes

- $B^0 \rightarrow K_S K_S K_S$ Amplitude analysis and time dependent CP asymmetry arXiv:1111.3636 [hep-ex], Phys.Rev.D85:054023 (2012)
- $B^0 \rightarrow K^+K^-K_S$, $B^+ \rightarrow K^+K^-K^+$ and $B^+ \rightarrow K_SK_SK^+$ Amplitude analysis and study of CP violation arXiv:1201.5897 [hep-ex], Phys.Rev.D85:112010 (2012)

full BaBar dataset (467M BB pairs)

Time dependent measurements, flavor tagging

Used in $\mathbf{B^0} \to \mathbf{K_S} \mathbf{K_S} \mathbf{K_S}$ and $\mathbf{B^0} \to \mathbf{K^+} \mathbf{K^-} \mathbf{K_S}$

Dalitz plot and the isobar model

- Each intermediate resonance in P → 1 2 3
 appears as a structure in the DP according to its mass, width and spin
- Parameterization of intermediate state amplitudes:
- $\begin{array}{ccc}
 & A \sim \Sigma \ c_i \ \mathbf{F}(\mathbf{m}^2_{13}, \mathbf{m}^2_{23}) & \mathbf{B} \ \text{decays} \\
 & \overline{A} \sim \Sigma \ \overline{c_i} \ \mathbf{F}(\mathbf{m}^2_{13}, \mathbf{m}^2_{23}) & \overline{\mathbf{B}} \ \text{decays}
 \end{array}$

complex e.g. Breit-Wigner

Directly extracted parameters: isobar amplitudes c_i Other parameters (S, C, A $_{CP}$, phases, Branching Fractions) are computed from them

Superimposed resonant contributions

- → Interference
- ⇒ access to phases with no ambiguity such as $\sin 2\beta_{\text{eff}} = \sin(180^{\circ} - 2\beta_{\text{eff}})$

Complexity of analyses varies: mode, time/ tag dependence...

$B^0 \rightarrow K_S K_S K_S$

overview and motivations

- $B^0 \rightarrow K_S K_S K_S$
- Small theoretical uncertainty \Rightarrow Comparison with $b\rightarrow c\bar{c}s$ is more meaningful
- Low background level (difficult to "imitate" 3 K⁰_S)

Inclusive time dependent analysis to extract CP asymmetries S and C $B^0{\longrightarrow} 3K^0{}_S(\pi^+\pi^-)$ $B^0{\longrightarrow} 2K^0{}_S(\pi^+\pi^-) \ K^0{}_S(\pi^0\pi^0)$

CP=+1 eigenstate \Rightarrow possible

first time ever

Simplest Only ~200 sig. events !!!

3 identical bosons
Symmetrized amplitude
even-spin resonances only $(f_X(1500) ???)$

Broad structure seen in past analyses, not confirmed

Determining the signal model

 $\mathrm{B}^0\!\to\mathrm{K}_\mathrm{S}\mathrm{K}_\mathrm{S}\mathrm{K}_\mathrm{S}$

Start from a "baseline" model inspired from K⁺K⁻K_S ($f_0(980)$, χ_{C0} , exponential nonresonant) "Ask the data" for the rest:

→ Likelihood projection as a function of the mass and width of additional generic resonance

Signal components:

- $B^0 \to f_0(980) K_S^0$
- $B^0 \to f_0(1710) K_S^0$
- $B^0 \to f_2(2010) K_S^0$
- $B^0 \rightarrow \chi_{c0} \text{ K }^0_{\text{ S}}$
- Non-resonant
- \rightarrow 5x1–1=4 complex isobar amplitudes

No $f_X(1500)$

Results of the amplitude analysis

 $f_2(2010)$

. 20 22 24 S_{max} [GeV²/c⁴]

120

100

80

60

40

20

			_
$f_0(980)K_S^0$	Fit Fraction (FF)	$0.44^{+0.20}_{-0.19}$	-
	Significance $[\sigma]$	3.0	
$f_0(1710)K_S^0$	FF	$0.07^{+0.07}_{-0.03}$	-
	Significance $[\sigma]$	3.3	
$f_2(2010)K_S^0$	FF	$0.09^{+0.03}_{-0.03}$	-
	Significance $[\sigma]$	3.3	
NR	FF	$2.16^{+0.36}_{-0.37}$	٠,
	Significance $[\sigma]$	8.0	
$\chi_{c0}K_S^0$	FF	$0.07^{+0.04}_{-0.02}$	-
	Significance $[\sigma]$	3.9	
	Total FF	$2.84^{+0.71}_{-0.66}$	_
			-

Huge destructive interference [GeV²/c⁴]

 S_{\min}

 $3 - f_0(1710)$

10

12

16

14

18

5 (+inclusive) Branching fractions (B)

Mode	$\mathcal{B}\left[\times 10^{-6}\right]$	PDG:
Inclusive $B^0 \to K^0_S K^0_S K^0_S$	$6.19 \pm 0.48 \pm 0.15 \pm 0.12$	$6.2 \pm {}^{1.2}_{1.1}$
$f_0(980)K_S^0, f_0(980) \to K_S^0 K_S^0$	$2.7^{+1.3}_{-1.2} \pm 0.4 \pm 1.2$	
$f_0(1710)K_S^0, f_0(1710) \to K_S^0 K_S^0$	$0.50^{+0.46}_{-0.24} \pm 0.04 \pm 0.10$	
$f_2(2010)K_S^0, f_2(2010) \to K_S^0 K_S^0$	$0.54^{+0.21}_{-0.20} \pm 0.03 \pm 0.52$	
$NR, K_S^0 K_S^0 K_S^0$	$13.3^{+2.2}_{-2.3} \pm 0.6 \pm 2.1$	
$\chi_{c0}K_S^0, \ \chi_{c0} \to K_S^0K_S^0$	$0.46^{+0.25}_{-0.17} \pm 0.02 \pm 0.21$	

Consistent with other measurements

$B^0 \rightarrow K_S K_S K_S$

Results of the time dependent analysis

Signal yields:

$$201 \pm {}^{16}_{15} \text{ B}^0 \rightarrow 3\text{K}^0_{\text{S}}(\pi^+\pi^-) \text{ (Purity = 40\%)}$$

$$62 \pm {}^{13}_{12} \quad B^0 \rightarrow 2K^0_S(\pi^+\pi^-) K^0_S(\pi^0\pi^0)$$

Confidence level contours (C, S)

Other $B \rightarrow KKK$ modes

Other $B \rightarrow 3K$ modes

overview and motivations

- In general: rich resonance structure \Rightarrow access to many observables:

 - Branching Fraction For each component

relative phases between components

which can be used to set non-trivial constraints on the CKM parameters $(\overline{\rho}, \overline{\eta})$

- Time dependent analysis to measure the effective β in $B^0 \rightarrow K^+K^-K_S$
 - → not a CP eigenstate! CP content depends on the intermediate state
 - \rightarrow includes ϕK_S (small theoretical uncertainty)
- DP structure of B⁺ \rightarrow K⁺K⁻K⁺ and B⁺ \rightarrow K_SK_SK⁺ useful for B⁰ \rightarrow K⁺K⁻K_S
 - \rightarrow 2 K_S in the final state: helpful to study the nature of broad f_x(1500)

Determining the signal model

- Prior to fitting CPV parameters, the nominal DP models are established
 - → CPV parameters set to the SM ones
 - → angular moments vs invariant masses are used to compare data and fit

$$\langle P_{\ell}(\cos\theta_3)\rangle \equiv \int_{-1}^{1} d\Gamma P_{\ell}(\cos\theta_3) d\cos\theta_3$$

- **K**+**K**-**K**+: $\phi(1020)$, $f_0(980)$, $f_0(1500)$, $f_2'(1525)$, $f_0(1710)$, χ_{c0} , poly. NR
- **K**_S**K**_S**K**⁺:, $f_0(980)$, $f_0(1500)$, $f_2'(1525)$, $f_0(1710)$, χ_{c0} , poly. NR

Best fits

In the 3 modes: no need for the $f_X(1500)$ good description with $f_0(1500)$, $f_2'(1525)$, $f_0(1710)$)

Results ($B^+ \rightarrow K^+K^-K^+$; $K_SK_SK^+$)

$$N_{sig} = 5269 \pm 84 \text{ (Purity } = 43\%)$$

BF = $(33.4\pm0.5\pm0.9)\times10^{-6}$ [χ_{c0} K excluded]

$$A_{CP}(\text{inclusive}) = (-1.7^{+1.9}_{-1.4} \pm 1.4)\%$$

$$A_{CP}(\phi K) = (12.8 \pm 4.4 \pm 1.3)\%$$

(2.8 σ from 0, SM: ~ 0 - 4.7%)

Beneke, Neubert, Nucl. Phys B675,333 (QCDF); Li, Mishima, PRD 74, 094020 (pQCD)

$$N_{sig} = 632\pm28 \text{ (Purity} = 20\%)$$

BF = $(10.1\pm0.5\pm0.3)\times10^{-6}$ [χ_{c0} K excluded]

$$A_{CP} = (4\pm 5\pm 2)\%$$

Results ($\mathbb{B}^0 \to K^+K^-K_S$)

Summary and Conclusions

- BaBar continues to produce physics results, adding more information and using more sophisticated analysis techniques to improve the precision of measurement in hadronic B decays
- All measurements agree with the standard model predictions, though a few tensions and puzzles still exist
- The actual statistics is not sufficient to tell whether or not these could be indications for new physics.

To find new physics in hadronic modes...

★ contribution from analyses shown here