

Measurement of Collins Asymmetries in inclusive production of pion pairs in e⁺e⁻ interactions at BaBar

Isabella Garzia

Melbourne

SLAC National Accelerator Laboratory
On behalf of the BaBar Collaboration

36th International Conference on High Energy Physics
4-11 July 2012
Melbourne Convention and Exhibition Centre

Outline

INTRODUCTION

- Theoretical framework
 - Collins Fragmentation Function in e⁺e⁻ annihilation

ANALYSIS OVERVIEW

- Reference frames and analysis method
- Extraction of the asymmetry for light quarks
- Asymmetry corrections and studies of systematic uncertainties

RESULTS

- Asymmetries vs. fractional energies, pion transverse momentum, and analysis axis polar angle
- Comparison with Belle measurements

CONCLUSIONS

Collins Fragmentation Function in eter annihilation

Fragmentation Functions (FFs):

- dimensionless and universal functions
- describe hadrons h in a quark (or gluon) jet in terms of $z=p_h/k_q$, and P_{\perp} of h with respect to the fragmenting quark direction.

For spinless hadron in a quark jet:

$$D_1^{q\uparrow}(z, \mathbf{P}_\perp; s_q) = D_1^q(z, P_\perp) + \frac{P_\perp}{zM_h} \underline{H_1^{\perp q}(z, P_\perp) \, \mathbf{s}_q \cdot (\mathbf{k}_q \times \mathbf{P}_\perp)}$$

H₁[⊥]: polarized FF or Collins FF

- transversely polarized quark → spinless hadron
- chiral-odd function

Collins effect (or Collins asymmetry): introduces an azimuthal modulation with respect to q spin direction
• should appear (mostly) in leading particles

In $e^+e^- \rightarrow q\overline{q}$, spins unknown but $s_q \parallel s_{\overline{q}}$

- correlation between two pions detected in opposite jet
- define **favored** ($u \rightarrow \pi^+$, $d \rightarrow \pi^-$) and **disfavored** ($d \rightarrow \pi^+$, $u \rightarrow \pi^-$) FFs, and consider the combination:

Event and track selection

EVENT SELECTION:

- \rightarrow Number of charged tracks > 2
- → Visible energy: $E_{vis} > 7 \text{ GeV}$
- → Selection of two-jet topology events requiring 0.8">thrust>0.8
- \rightarrow Events in the $\tau^+\tau^-$ region removed

TRACK SELECTION:

- $\rightarrow \mu^{\pm}$ and e^{\pm} veto, and pion ID required
- → Tracks in the detector acceptance region: $0.41 < \theta_{lab} < 2.54 \text{ rad.}$
- \rightarrow Pion fractional energies 0.15< $z=2E_h/\sqrt{s}<0.9$
- → Opening angle ($\theta_{pi-thrust}$) of each pion with respect to the thrust axis < 45°
- \rightarrow Q_t<3.5 GeV to reduce gluon radiation (where Q_t is the transverse momentum of the virtual photon in the pions center of mass frame)

RF12: Double ratio method

Two reference frames used in literature: Nucl.Phys. **B** 806,23 (2009) PRD 78, 032011 (2008)

$\phi_{12} = \phi_1 + \phi_2$ or Thrust RF (RF12)

$$\sigma \sim 1 + \frac{\sin^2 \theta_{th}}{1 + \cos^2 \theta_{th}} \cos(\phi_1 + \phi_2) \frac{H_1^{\perp}(z_1) \bar{H}_1^{\perp}(z_2)}{D_1(z_1) \bar{D}_1(z_2)}$$

- large modulation observed in MC sample due to detector acceptance

• Acceptance effects can be removed performing the ratio of **Unlike/Like** (UL) sign pion pairs (or **Unlike/Charged** (UC)):

$$\frac{R_{\alpha}^{U}}{R_{\alpha}^{L(C)}} = \frac{N^{U}(\phi_{\alpha})/\langle N^{U}(\phi_{\alpha})\rangle}{N^{L(C)}(\phi_{\alpha})/\langle N^{L(C)}(\phi_{\alpha})\rangle} \rightarrow B_{\alpha}^{UL(UC)} + A_{\alpha}^{UL,(UC)} \cdot \cos(\phi_{\alpha}) \quad (\alpha=12)$$

small deviation from zero still present in MC sample ==> systematic errors

I. Garzia

All quantities in e⁺e⁻ center of mass

Thrust Axis

 $\theta_{\mathsf{th}}/\mathsf{e}^{-}$

P_{h2}

RFO: Double ratio method

2φ₀ or Second hadron momentum RF (RF0)

$$\sigma \sim 1 + \frac{\sin^2 \theta_2}{1 + \cos^2 \theta_2} \cos(2\phi_0) \mathcal{F} \left[\frac{H_1^{\perp}(z_1) \bar{H}_1^{\perp}(z_2)}{D_1(z_1) \bar{D}_1(z_2)} \right]$$

All quantities in e⁺e⁻ center of mass

- The MC generator (JETSET) does not include the Collins effects
 - large modulation observed in MC sample due to detector acceptance
- Acceptance effects can be removed performing the double ratio of Unlike/Like (UL) sign pion pairs (or Unlike/Charged (UC)):

$$\frac{R_{\alpha}^{U}}{R_{\alpha}^{L(C)}} = \frac{N^{U}(\phi_{\alpha})/\langle N^{U}(\phi_{\alpha})\rangle}{N^{L(C)}(\phi_{\alpha})/\langle N^{L(C)}(\phi_{\alpha})\rangle} \rightarrow B_{\alpha}^{UL(UC)} + A_{\alpha}^{UL,(UC)} \cdot \cos(\phi_{\alpha}) \quad \alpha=0$$

small deviation from zero still present in MC sample ==> systematic errors

Asymmetry corrections and systematic effects

==> We study the Collins asymmetry vs. pion fractional energies (z_1 and z_2), pion transverse momentum (p_{t1} , p_{t2} , and p_{t0}), polar angles θ_{th} , and θ_2

==> The asymmetry measurement is affected by a number of **systematic effects.** We study possible systematic contributions and correct the asymmetries independently **for each** z **and** p_t **bin**

The main corrections and contributions to systematic effects are:

- Background contamination from charm ($\sim 30\%$), bottom, and τ events which survives the selection;
 - We use a **D**-enhanced control sample** to estimate this effect on a **bin-by-bin basis**:

$$A_{\alpha}^{meas} = (1 - F_c - F_B - F_\tau) \cdot (A_{\alpha}) + F_c \cdot A_{\alpha}^{ch} \quad \text{F}_{\text{i}} \text{ and } \text{f}_{\text{i}} \text{ are estimated using MC}$$

$$A_{\alpha}^{D^*} = f_c \cdot A_{\alpha}^{ch} + (1 - f_c - f_b) \cdot (A_{\alpha}), \quad \text{control samples}$$

uds Collins asymmetry

- A significant source of systematic error can arise from the fraction F_i (f_i) estimated using MC samples: we assign the bin-by-bin discrepancies in the value of F_i (f_i) between MC and data as systematic uncertainties
- Asymmetry dilution due to the thrust axis approximation as the $q\bar{q}$ axis. The statistical error of the correction is taken as systematic error
- •Asymmetries measured in the *uds* Monte Carlo: we subtract the small asymmetry observed in the MC sample; we vary the track selection criteria in order to evaluate the systematic error

Systematic errors indicated by shaded bands

- 1) The asymmetry increases significantly with z (note log y-axis), as expected (RF12: 1-39 %, RF0: 0.5-15 %)
- 2) UC (▼) double ratio significantly smaller than UL (△) (PRD 73, 094025 (2006))

RFO: BaBar/Belle asymmetry comparisons

>0.7 **l**_{0.3-0.5}

0.3 - 0.5

0.5-0.7 | >0.7 | 0.5-0.7 |

0.5 - 0.7

1 > 0.7

In order to perform this comparison, we used 10 (+1) symmetrized *z*-bin subdivisions, averaging the measured Belle and BaBar asymmetries which fell in the same symmetric bins

A₀^{UL} and A₀^{UC}: good agreement between the BaBar asymmetries and the Belle results.

 $(z_1,z_2)_{bin}$

 $\rightarrow z_1$

10

0.2 - 0.3

0.3-0.5 | 0.5-0.7 |

0.15-0.2

0.15 - 0.2 | 0.2 - 0.3

RF12: BaBar/Belle asymmetry comparisons

 A_{12}^{UL} : large discrepancy in the last two bins of z

- bin-by-bin correction factors (30%)
- z<0.9 to remove the contamination from $\mu\mu\gamma$ background events

 A_{12}^{UC} : BaBar asymmetry systematically above the Belle results for all z. Belle analysts are investigating

Belle analysts are investigating the source of discrepancies.

Collins asymmetry vs. pt

Systematic errors indicated by shaded bands

- Collins asymmetries vs. p_t measured in e⁺e⁻ annihilation at Q²~110 (GeV/c)² (time-like region)
- The asymmetries increase as a function of p_t ; the increase is expected to continue up to a certain value of p_t , and to decrease there after

These measurements provide information about the evolution of the fragmentation functions (available only space-like measurements at lower Q² (PRD 75,054032 (2007), PRL 94, 012002 (2005), PLB 692, 240 (2010)).

Collins asymmetry vs. $\sin^2\theta/(1+\cos^2\theta)$

$$\mathbf{A}_{12} \propto \frac{\sin^2 \theta_{th}}{1 + \cos^2 \theta_{th}} \cos(\phi_1 + \phi_2) \frac{H_1^{\perp}(z_1) \bar{H}_1^{\perp}(z_2)}{D_1(z_1) \bar{D}_1(z_2)}$$

==> Intercept consistent with zero, as expected (consistent with Belle results)

$$\mathbf{A}_{0} \propto \frac{\sin^{2} \theta_{2}}{1 + \cos^{2} \theta_{2}} \cos(\frac{2\phi_{0}}{2}) \mathcal{F} \left[\frac{H_{1}^{\perp}(z_{1}) \bar{H}_{1}^{\perp}(z_{2})}{D_{1}(z_{1}) \bar{D}_{1}(z_{2})} \right]$$

==> The linear fit gives a non-zero constant parameter → the second hadron momentum provides a poorer estimate of the qq direction (consistent with Belle results)

Conclusions

We have measured Collins asymmetries for pion pairs in light quark (uds) jets

```
from e<sup>+</sup>e<sup>-</sup>\rightarrowqq in two reference frames   [ A<sub>12</sub> A<sub>0</sub> ] as a function of: \Rightarrow \pi^{\pm} fractional energy z   [ z<sub>1</sub>, z<sub>2</sub> z<sub>1</sub>, z<sub>2</sub> ] \Rightarrow \pi^{\pm} transverse momentum p_t [ p_{t1}, p_{t2} p_{t0} ] \Rightarrow quark polar angle   [ \theta_{th} \theta_2 ]
```

- \supset A_{12} and A_0 increase with increasing z_1, z_2
 - consistent with theoretical expectations
 - effect is stronger for leading particles
- \triangleright A_{12} (A_0) increases (strongly) with p_{t1} , p_{t2} (p_{t0}) for p_t between 0 to 1 GeV/c
 - first measurement in e^+e^- annihilation at $Q^2\sim 110~(GeV/c)^2$
 - important for understanding the evolution of the fragmentation function
- \Rightarrow A_{12} is linear in $\sin^2\theta_{th}/(1+\cos^2\theta_{th})$, with zero intercept
 - consistent with the expectations
- A_0 is linear in $\sin^2\theta_2/(1+\cos^2\theta_2)$, but intercept $\neq 0$
 - θ_2 is a poor measure of quark direction

Thanks for your attention

BACKUP SLIDES

Global analysis: transversity and Collins FF extraction

Transversity function (h₁): describes the distribution of quark's transverse spin in a transversely polarized nucleon → remains the least known distribution due to its **chiral-odd nature** ==> Partial information from Semi-Inclusive Deep Inelastic Scattering (SIDIS), where it appears with another chiral-odd function:

$$A_T \propto h_1(x_B) \otimes H_1^{\perp}(z)$$
 HERMES: PRL 94, 012002 (2005) COMPASS: PRL 94, 202002 (2005)

B-Factories $e^+e^- \rightarrow \underline{\text{direct evidence of non-zero Collins FF}}$: BELLE (PRL 96, 232002(2006), PRD 78, 032011(2008))

Collins effect:

The correlation between two hadrons detected in opposite jets results in an azimuthal asymmetry

 $A \propto \cos(\phi_i) \mathbf{H_1^{\perp}(z_1)} \otimes \mathbf{H_1^{\perp}(z_2)}$ where $z_{1,2} = 2E_h/\sqrt{s}$

SIDIS + e⁺e⁻: global analysis (HERMES & COMPASS & BELLE) ==> simultaneous determination of h_1 and H_1^{\perp} (M. Anselmino et al., PRD 75, 054032 (2008))

PEP-II and the BaBar detector at SLAC

- Asymmetric e^+e^- collider operating at the Y(4S) resonance ($\sqrt{s}=10.58 \text{ GeV}$)
- High Energy Ring (HER): 9.0 GeV e⁻
- Low Energy Ring (LER): 3.1 GeV e⁺
- βγ≈0.56

 $\angle \sim 430 \text{ fb}^{-1}$: peak of the Y(4S) resonance

 $\angle \sim 40 \text{ fb}^{-1}$: 40 MeV below the Y(4S) resonance

 $==> \sim 10^9$ uds events

D*±-enhanced control sample

Asymmetry dilution

The experimental method assumes the thrust axis as \overline{qq} direction: this is only a rough approximation

RF12: <u>large smearing</u> since the azimuthal angles ϕ_1 and ϕ_2 are calculated with respect to the thrust axis; additional dilution due to very energetic tracks close to the thrust axis.

RF0: the azimuthal angle ϕ_0 is calculated with respect to the second hadron momenta \rightarrow small smearing due to PID and tracking resolution

→We study the influence of the detector effects by correcting a posteriori the generated angular distribution: weights defined as $\mathbf{w}^{\text{UL(UC)}}=\mathbf{1}\pm\mathbf{a}\bullet\mathbf{cos}(\phi_{\text{gen12,0}})$ are applied to every selected pion pairs.

RF12: correction performed for each bins of z and p_t: (1.3-2.3) as a function of z, and (1.3-3) as a function of p_t. RF0:no correction needed.

RF12

Normalized distributions and Double Ratio

• Collins asymmetry

- fit to the normalized azimuthal distribution

$$R_{lpha} = rac{N(\phi_{lpha})}{< N_{lpha}>} = b_{lpha} + a_{lpha} \cdot \cos(\phi_{lpha})$$
 $lpha$ =12 or 0

- unpolarized distribution $\langle N_{\alpha} \rangle$ is flat
- Collins FF contained in the cosine moment a
- The MC generator (JETSET) does not include the Collins effects
 - observed modulation in MC sample produced by detector acceptances
- ==> Acceptances effects can be removed performing the ratio of Unlike/Like (UL) sign pion pairs (or Unlike/Charged (UC)) small deviation from zero still present in MC sample ==> systematic errors

MC: Like and Unlike distributions are coincident

$$\frac{R_{\alpha}^{U}}{R_{\alpha}^{L(C)}} = \frac{N^{U}(\phi_{\alpha})/\langle N^{U}(\phi_{\alpha})\rangle}{N^{L(C)}(\phi_{\alpha})/\langle N^{L(C)}(\phi_{\alpha})\rangle} \to B_{\alpha}^{UL(UC)} + A_{\alpha}^{UL,(UC)} \cdot \cos(\phi_{\alpha})$$

 A_{α} : contains only the Collins effect and higher order radiative effects

