ATLAS studies of diffraction, soft particle production and double parton scattering.

ICHEP 2012 6th July 2012, Melbourne

Tim Martin - University of Birmingham

On behalf of the ATLAS Collaboration

Overview

Following analyses use a combination of Inner Detector Tracking and ATLAS calorimetry.

MCViz

~75% of all inelastic interactions at the LHC are non-diffractive.

~25% of the time the inelastic interaction is diffractive which can result in a characteristic rapidity gap.

√s [GeV]

σ_{Inelastic}

 Inelastic pp cross section measured over acceptance of ATLAS Minimum Bias Trigger Scintillators.

$\sigma_{\text{inel.}} = 69.4 \pm 2.4 \text{(exp.)} \pm 6.9 \text{(extrap.)}$

- MC model uncertainty dominates extrapolation to full phase space.
- Also measured the ratio of exclusively single sided MBTS triggered events.
- Sensitive to the magnitude of the diffractive component.

$\sigma_{Inelas.}$ as a function of $\Delta \eta^F$

Δη_F = largest, empty η interval from edge of detector at η=±4.9

Corrected to charged & neutral particles $p_T > 200,$ 400, 600 & 800 MeV

Bayesian unfolding technique

Particle Correlations

• Forward-Backward multiplicity and p_T correlations in η .

Deviation of fwd(bkwd) multiplicities from their mean.

Standard deviation of fwd(bkwd) distributions about their mean.

 ρ^{n}_{fb} = in a forward-backward η region is the normalised covariance between the two distributions, relative to the mean value of each.

Deviation of fwd(bkwd) scalar p_T sum of all accepted tracks from their mean.

$$\rho_{fb}^{p_T} = \frac{\sum x_f^{p_T} x_b^{p_T}}{N \sigma_f^{p_T} \sigma_b^{p_T}}$$

Detector level distributions are corrected to the hadron level using linear regression technique with different MC models.

 $\rho_{\text{had}} = \alpha + \beta \rho_{\text{det}}$

Trigger & Vertex Eff. : $\alpha = 0.07 \pm 0.03$

Track Reconstruction Eff. : $\beta = 0.96-0.97$

Results for ρ^n_{fb} & $\rho^{p_T}_{fb}$

Centre of mass dependence

Azimuthal Correlations

- Investigated as a function of η region and fwd/bkwd correlation.
- Primarily looking at the `toward' region.
- Subtract away the `transverse' region plateau for data and MC.
- The difference $\Delta \phi$ is plotted here vs. the leading (highest p_T) track in the event.

Track-jet Underlying Event

Huge quantity of tuning data, much too much to show here.

- N_{ch} , $\Sigma |p_T|$ and $\langle p_T \rangle$. Plus as a function of p_T^{jet} in the range $4 < p_T^{Jet} < 100$ GeV
- For Anti- k_T Track jets with R = 0.2, 0.4, 0.6, 0.8, 1.0
- In the Transverse and Away regions.

NeW!

Differential Transverse Energy Density

Differential Transverse Energy Density

- Diffractive contributions halved and doubled.
- Affects the amount of activity (diffractive events are softer on average).
- Has little effect on the shape.

 In MSTW2008 LO, changes to the gluon PDF decreases central but increases forward energy.

Event Shapes

Transverse Thrust:

$$\tau_{\perp} = 1 - T_{\perp}$$

For Thrust Axis, unit vec. \hat{n}_T for which:

$$\max_{\hat{n}} \frac{\sum_{i} |\vec{p}_{T}^{i} \cdot \hat{n}|}{\sum_{i} |\vec{p}_{T}^{i}|}$$

AMBT2B not so good
Z1 best

0.05

MC/Data

0.15

0.25

0.2

Thrust Minor:

Out of event plane energy flow.

$$\hat{n}_M = \hat{n}_T \times \hat{z}$$

Defined by thrust axis (\hat{n}_T) and beam axis (\hat{z})

Event Shapes

Transverse Sphericity:

A measure of the transverse summed p_T^2 with respect to the event axis.

Shown here as a function of p_T^{lead} Derived from the **eigenvectors** $(\lambda^{xy}_2 < \lambda^{xy}_1)$ of the **transverse** components of the **event momentum**

tensor:

$$S^{xy} = \sum_{i} \begin{bmatrix} p_{x}^{2,i} & p_{x}^{i} p_{y}^{i} \\ p_{x}^{i} p_{y}^{i} & p_{y}^{2,i} \end{bmatrix} \quad S_{\perp} = \frac{2\lambda_{2}^{xy}}{\lambda_{1}^{xy} + \lambda_{2}^{xy}}$$

Transverse thrust, thrust minor and transverse sphericity measured for leading particle.

 $p_{T}^{lead} > 0.5, 2.5, 5.0 \text{ GeV}$

Along with average values as a function of N_{ch} and $\Sigma p_{\scriptscriptstyle T}$

Hard DPI: W→lv+jj

$$\Delta_{\text{jets}}^{\text{n}} = \frac{|\vec{p}_{\text{T1}} + \vec{p}_{\text{T2}}|}{|\vec{p}_{\text{T1}}| + |\vec{p}_{\text{T2}}|}$$

Template A: Non-DPI MC

Template B: Di-jet Data

Templated χ² minimisation

Direct Production Double Parton

Template extracted fraction of DPI: $f_{DPI}^{R} = 0.16\pm0.01 \text{ (stat)}\pm0.03 \text{ (sys)}$

Subsequently evaluated DPI cross section: $\sigma_{DPI}^{eff}(7 \text{ TeV}) = 11\pm 1(\text{stat})^{+3}$ ₋₂(sys) mb

Is the gluon field helical?

Corrected via HBOM [arXiv:1111.4896v2]

- An efficient way to pack soft gluons into a Lund string formalism under helicity conservation requirement is the formation of a helix structure at the end of the parton cascade. [Is there screwiness at the end of the QCD cascades? arXiv:hep-ph/9807541v1]
- Correlations in the break points of a helically ordered string will manifest as observables in the p_T distribution and azimuthal ordering of hadrons produced directly from string fragments.
- Assuming string breakup through tunneling, ϕ direction of initial hadron p_T coincides with the phase of the helix string.
- φ opening angle of two direct hadrons will then measures the phase difference between two corresponding points along the string.

Assumes helix winding is proportional to the rapidity difference between hadrons

φ and η of j_{th} hadron.

$$S_{\eta}(\xi) = \frac{1}{N_{\text{Ev}}} \sum_{\text{Events}} \frac{1}{n_{\text{Ch}}} \left| \sum_{i}^{n_{\text{Ch}}} e^{i(\xi)} \right|$$

Is the gluon field helical?

Corrected via HBOM [arXiv:1111.4896v2]

- An efficient way to pack soft gluons into a Lund string formalism under helicity conservation requirement is the formation of a helix structure at the end of the parton cascade. [Is there screwiness at the end of the QCD
- Assumir Pythias forge arough tunneling, of New Pythias hadron p_T coincid with projects hear hadron p_T coincid
- φ opening angle of two direct hadrons will then measures the phase difference between two corresponding points along the string.

Assumes helix winding is proportional to the rapidity difference between hadrons

 φ and η of j_{th} hadron.

$$S_{\eta}(\xi) = \frac{1}{N_{\text{Ev}}} \sum_{\text{Events}} \frac{1}{n_{\text{Ch}}} \left| \sum_{j}^{n_{\text{Ch}}} e^{i(\xi \eta_j - \phi_j)} \right|$$

 Data 2010 $n_{ch}>10$, max $(p_{\tau})<1$ GeV ····· PHOJET $p_{-}>100 \text{ MeV}, |\eta|<2.5$ PYTHIA8 4C PYTHIA6 AMBT2b Low p_T Enhanced

> ξis a scale parameter.

K_{S}^{0} and Λ

All tunes struggle to describe Λ data at high p_T

Two Particle Correlations

- $\Delta \eta$ and $\Delta \phi$ correlations between all particles in an event.
- Background subtracted by combining two particles from different events.

 Normalised to be independent of per event particle multiplicity.

Most models (except Herwig++) reasonably predict the shape of the correlations

Δn

Conclusion

- A wealth of data from ATLAS on event characteristics, particle properties and correlations are available at the hadron level.
- Measurement of charged-particle event shape variables in sqrt(s) = 7 TeV protonproton interactions with the ATLAS detector [Coming soon!]
- Measurements of the pseudorapidity dependence of the total transverse energy in proton-proton collisions at sqrt(s)=7 TeV with ATLAS [Coming soon!]
- Measurement of charged-particle event shape variables in sqrt(s) = 7 TeV protonproton interactions with the ATLAS detector [Coming soon!]
- Measurement of the azimuthal ordering of charged hadrons with the ATLAS detector at the LHC [arXiv:1203.0419]
- Measurement of Inclusive Two-Particle Angular Correlations in pp Collisions with the ATLAS Detector at the LHC [arXiv:1203.3549]
- Forward-backward correlations and charged-particle azimuthal distributions in pp interactions using the ATLAS detector [arXiv:1203.3100]
- Rapidity Gap Cross Sections in pp Interactions at sqrt(s) = 7 TeV measured with the ATLAS detector [arXiv:1201.2808]
- Kshort and Lambda production in pp interactions at sqrt(s) = 0.9 and 7 TeV measured with the ATLAS detector at the LHC [arXiv:1111.1297]
- Measurement of the Inelastic Proton-Proton Cross-Section at sqrt(s) = 7 TeV with the ATLAS Detector [arXiv:1104.0326]
- A measurement of hard double-partonic interactions in W --> l nu + 2 jet events with the ATLAS detector at the LHC [ATLAS-CONF-2011-160]

BACKUP

Is the gluon field helical? Part II

• One possibility, a static, regular helix with helical phase difference $\Delta \phi$ proportional to the stored energy in the string.

 κ is string energy density

$$\Delta \phi = \mathfrak{L} \kappa \Delta l = \mathfrak{L} \Delta E$$

 $\Delta l \& \Delta E$ are length and energy separation in string rest frame.

- ΔE is not directly observable, but we can approximate the string as a chain of hadrons, ordered in η .
- Define a **second power spectrum**, based on φ and the **position in the chain**, X defined as: k < i

$$X_j = 0.5 E_j + \sum_{k=0}^{3} E_k$$

 E_k is the energy of the $k_{\rm th}$ hadron in the string.

$$S_E(\omega) = \frac{1}{N_{\text{Ev}}} \sum_{\text{Events}} \frac{1}{n_{\text{Ch}}} \left| \sum_{j}^{n_{\text{Ch}}} e^{i(\omega X_j - \phi_j)} \right|^2$$

ω is a scale parameter.

Very similar form factor, but probing a different structure in the QCD field.

Helical ordering will appear as a peak in the power spectrum, location = winding density.

More results for $S_E(\omega)$ & $S_n(\xi)$

ω [GeV⁻¹]

• Data corrected to hadron level via HBOM [arXiv:1111.4896v2]

(Backward extrapolation from the parametrisation of repeated applications of the detector smearing matrix)

Inclusive MinBias

Lund string fragmentation model roughly reproduces the data.

ATLAS S = 7 TeV0
0
Data 2010 $n_{ch} > 10, \max(p_{T}) < 1 \text{ GeV}$ $p_{T} > 100 \text{ MeV}, |η| < 2.5$ PYTHIA6 AMBT2b
HERWIG++ UE7-2
0.2

 $S_E(\omega)$ -1

Low p_T Enhanced S₁(ξ)

Models unable to sufficiently describe the data.

More results for $S_E(\omega)$ & $S_n(\xi)$

Low p_T Depleted

Model Parameter Sensitivity

Low p_T Enhanced

Two Particle Correlations

- $\Delta \eta$ and $\Delta \phi$ correlations between all particles in an event.
- Background subtracted by combining two particles from different events.
- Normalised to be independent of per event particle multiplicity.

K_{ς}^{0} and Λ

 Λ : p_T > 500 MeV, flight distance between **17 mm - 450 mm** Decay to a proton and a pion with $|\eta| < 2.5$, $p_T > 100 \text{ MeV}$

Track-jet Underlying Event

Event normalised average p_T for R=0.2 and $31 \le p_T^{jet} < 50$ GeV

```
DATA 2010 √s = 7 TeV

PYTHIA (Z1)

PYTHIA (AUET2B)

HERWIG++ (UE7-2)

PYTHIA (Perugia2011)

PYTHIA (Perugia2011 NOCR)

PYTHIA 8.145 (4C)
```

 $p_{\mathrm{T}}^{\mathrm{track}} \ge 0.5 \; \mathrm{GeV} \quad |\eta^{\mathrm{track}}| \le 1.5$ anti- k_t jets: $|\eta^{\mathrm{jet}}| \le 1.5$

$\int \sigma_{lnelas}(\xi) d\xi$

- Measure the total inelastic cross section which produces particles in the main ATLAS detector. Can integrate up to a cut point.
- Apply all correlated systematics symmetrically plus additional correction from $\Delta \eta^F$ to ξ derived from MC, at most 1.1±1.1%
- Luminosity error dominates.
- Comparison with published ATLAS paper good to o.8%, this is the measured run-to-run lumi error.
- Also included, **TOTEM**.
- And Durham RMK prediction.

$$\xi = \frac{M_X^2}{c}$$

M_X = Invariant mass of diffractive system

$\int \sigma_{lnelas}(\xi) d\xi$

- Measure the total inelastic cross section which produces particles in the main ATLAS detector. Can integrate up to a cut point.
- Apply all correlated systematics symmetrically plus additional correction from $\Delta \eta^F$ to ξ derived from MC, at most 1.1±1.1%
- Luminosity error dominates.
- Comparison with published ATLAS paper good to o.8%, this is the measured run-to-run lumi error.
- Also included, **TOTEM**.
- And Durham RMK prediction.

Tension of ~7 mb of low mass diffractive cross section.

Particle Correlations

• Forward-Backward multiplicity and p_T correlations in η .

Deviation of fwd(bkwd) multiplicities from their mean.

Events

Standard deviation of fwd(bkwd) distributions about their mean.

Deviation of fwd(bkwd) scalar p_T sum of all accepted tracks from their mean.

$$\rho_{fb}^{p_T} = \frac{\sum x_f^{p_T} x_b^{p_T}}{N \sigma_f^{p_T} \sigma_b^{p_T}}$$

