CP violation at the Neutrino Factory

K. Long, 5 July, 2012
On behalf of the IDS-NF collaboration
Acknowledgements:

• Many thanks to those who provided information or material:
 – And in particular the International Design Study for the Neutrino Factory (the IDS-NF) collaboration and the EUROnu collaboration

See also:
ICFA Beam Dynamics
Newsletter 55:72-78, 2011
Contents:

• The θ_{13} dividend

• The IDS-NF baseline Neutrino Factory

• Sensitivity and precision

• Increments and implementation

• Conclusions
CP violation at the Neutrino Factory:
The θ_{13} dividend
Standard Neutrino Model:

- Exciting new data!

- Discovery of leptonic CP-violation is possible:
 - Best chance at the Neutrino Factory

- Increases motivation for precision determination of the parameters and search for “non-standard effects”
The case for exquisite sensitivity:

- **Precision measurements are essential to:**
 - **Complete the “Standard Neutrino Model” (SvM):**
 - Determine the mass hierarchy
 - Search for (and discover) leptonic CP-invariance violation
 - **Establish the SvM as the correct description of nature:**
 - Determine precisely the degree to which \(\theta_{23} \) differs from \(\pi/4 \)
 - Determine \(\theta_{13} \) precisely
 - Determine \(\theta_{12} \) precisely
 - **Search for deviations from the SvM:**
 - Test the unitarity of the neutrino mixing matrix
 - Search for sterile neutrinos, non-standard interactions, ...

- **What determines the goal for sensitivity and precision?**
 - **Sensitivity:**
 - Definitive discovery!
 - Must have sensitivity of at least “5\(\sigma\)”
 - To resolve the LSND/miniBOONE “suite of anomalies” may set the bar higher!
 - **Precision:**
 - Field presently led by experiment;
 - Too many, or too few, theories;
 - Goal to determine parameters with a precision comparable to that with which the quark-mixing parameters are known
CP violation at the Neutrino Factory:

The IDS-NF baseline Neutrino Factory
Neutrino Factory:

• Optimise discovery potential for CP and MH:
 – Requirements:
 • Large $\nu_e (\bar{\nu}_e)$ flux
 – Detailed study of sub-leading effects
 • Unique:
 • (Large) high-energy $\nu_e (\bar{\nu}_e)$ flux
 – Optimise event rate at fixed L/E
 – Optimise MH sensitivity
 – Optimise CP sensitivity
IDS-NF baseline Neutrino Factory:

- **Accelerator facility:**
 - 10^{21} useful decays/yr
 - 10 GeV stored-muon energy
 - 2000 km source-detector baseline

- **Neutrino detectors:**
 - 100 kT magnetised iron neutrino detector (MIND)
 - Near detector and ring instrumentation suite to:
 - Determine flux
 - Measure cross sections
 - Perform detailed neutrino-scattering physics programme
Accelerator Facility

Proton Driver:
- 4 MW; $5 < E_p < 15$ GeV; bunch length 1—3 ns
- Linac (CERN, FNAL) and ring (RAL, JPARC) options

Pion-Production Target:
- Baseline: liquid mercury jet
- Options: powder jet or solid
- Progress: particle shielding, magnetic lattice

Muon Front End:
- Chicane (new) to remove secondary hadrons:
 - Bent solenoid transport & beryllium absorber
- Buncher & rotator:
 - Progress: lattice revision in response to engineering study
- Cooling:
 - Baseline: solenoid transport, LiH absorber
 - Options: bucked coils or high-pressure H2
 - Progress: lattice revision in response to engineering study

Rapid Acceleration:
- Two options considered for acceleration to 10 GeV:
 - Linac, RLA I and RLA II;
 - Linac, RLA I and FFAG
- Choice based on cost and performance estimates

Pion-Production Target:
- MERIT experiment at CERN proved principle of mercury jet target

Muon Front End:
- MuCool programme at FNAL:
 - Study of effect of magnetic field on high-gradient, warm, copper cavities;
- MICE experiment at RAL:
 - Proof of principle of ionization-cooling technique

Rapid Acceleration:
- EMMA experiment at DL:
 - Proof of principal of non-scaling FFAG technique;
 - Novel technology allows circular acceleration without magnet ramp
Magnetized Iron Neutrino Detector (MIND):

- IDS-NF baseline:
 - Intermediate baseline detector:
 - 100 kton at 1500—2500 km
 - Appearance of “wrong-sign” muons
 - Toroidal magnetic field > 1 T
 - Excited with “superconducting transmission line”
 - Segmentation: 3 cm Fe + 2 cm scintillator
 - 50-100 m long
 - Octagonal shape
 - Welded double-sheet
 - Width 2m; 3mm slots between plates

Bross, Soler, Bayes, Cervera
Near detectors:

- Neutrino flux (<1% precision) and extrapolation to far detector
- Charm production (main background) and taus for Non Standard Interactions (NSI) searches
- Cross-sections and other measurements (i.e., PDFs, $\sin^2\theta_W$)
Sensitivity and precision

CP violation at the Neutrino Factory:
Comparison:

- Discovery reach at 3σ:
 - **Neutrino Factory**: 85—90%
 - Beta beam and SPL: 70—80%
 - Super beam: 60—75%
Comparison with alternatives:

- Neutrino Factory offers best precision:

 - Issue now is control of systematic effects
• Benefit of luminosity:
 • Solid black lines show effect on precision of scaling luminosity from baseline 10^{21} decays per year
 • Potential for definition of staged upgrade programme
CP violation at the Neutrino Factory:

Increments and implementation
Ambition:

• Large value of θ_{13}, makes it likely that the next generation long-baseline experiments will determine the neutrino mass hierarchy;
 – However, sensitivity to CP violation will be limited;

• In the first instance, a combination of long-baseline (wide-band beam) experiments (e.g. LBNE/LBNO) and short baseline experiments (e.g. T2HK) may offer an attractive way forward:
 – In such an approach:
 • CP reach is limited by systematic effects;
 • Hints of CP violation would require follow up by the Neutrino Factory.

• The Neutrino Factory is the facility of choice, but, stored muon beams have not yet been shown to be capable of serving a world-class neutrino programme:
 – Require to push through R&D and complete IDS-NF, considering an incremental implementation in parallel; and
 – Establish a first, realistic, scientifically first-rate neutrino experiment based on a stored muon beam
Systematic uncertainties:

- T2HK, a case study:
 - Narrow-band beam
 - Near and far detector

Huber, Mezzetto, Schwetz, arXiv:0711.2950v2
nuSTORM: conceptual design:

LOI [Bross et al]; submitted to FNAL

• Magnetized Iron
 - 1 kT fiducial volume
 - Following MINOS ND ME design
 - 1 cm Fe plate
 - 5 m diameter
 - Utilize superconducting transmission line for excitation
 - Developed 10 years ago for VLHC
 - Extruded scintillator +SiPM
Cross sections:

- Unique opportunity to measure electron-neutrino cross sections
- Also, measure muon-neutrino cross sections
- Full set of neutrino-scattering physics:
 - QCD
 - Structure functions & form factors
 - Electroweak
 - ...
- Concept for detector:
 - Straw tracker, EM Calor, TRD and μ spectrometer
 - Meets all needs for ND
 - Detector technology exists
 - Costed

Mishra, IDS-NF#8
Sensitivity:

Sterile neutrino search

- Need either $E_\mu = 4$ GeV or 10^{19} useful muon decays/polarity to cover best-fit
- Highly competitive compared to alternatives (\leftrightarrow Sterile neutrino white paper)
- Can one improve on “systematics limit”?

Tunnell, appearance

10^{21} POT

ν-mode

Stored μ^+

Δm^2_{41} [eV2]

99% MBν/LSND$\bar{\nu}$

$\sin^2 (2\theta_{\mu\nu})$

Winter, disappearance

$\sin^2 2\theta$
2. Increment 2:
- Upgrade proton-beam power
- Install cooling
- Upgrade detector mass
 i.e. large θ_{13} option from IDR

GLoBES 2011 – November 7
Conclusions

CP violation at the Neutrino Factory:
Conclusions:

- Measurement of θ_{13} emphasises:
 - 5σ discovery sensitivity:
 - Mass hierarchy;
 - CP-invariance violation;
 - Precision measurement of neutrino oscillations

- Neutrino Factory:
 - Unique; meeting the “5σ” sensitivity and precision goals;
 - Mature:
 - Key hardware issues addressed, or being addressed by R&D programmes;
 - Conceptual design documented in IDS-NF IDR
 - Costing in preparation for EUROnu final report and IDS-NF RDR
 - Outstanding opportunity to contribute in the short term: nuSTORM
 - Essential cross section measurements;
 - Sterile-neutrino search
 - Incremental approach to full Neutrino Factory conceivable

- Altogether, an exciting programme!