W & Z production at ATLAS

Feedback to the theory of strong interactions

M. Boonekamp, for the ATLAS Collaboration
W and Z production as a probe of strong interactions

- Event reconstruction, kinematics

\[p_T^1, \eta^1 \]
\[p_T^1 + u = E_T^{\text{miss}} \Rightarrow p_T^v \]
\[M_T = \left[2 p_T^1 p_T^v (1 - \cos \Delta \phi) \right]^{1/2} \]

\[p_T^1, \eta^1 ; p_T^2, \eta^2 \]
\[M = \left[2 p_T^1 p_T^2 (\cosh \Delta \eta - \cos \Delta \phi) \right]^{1/2} \]
W and Z production as a probe of strong interactions

- Probing the proton

From detector-level to parton-level kinematics:

- $\frac{1}{2} \ln \frac{(E^2 + p_T^2)}{(E^2 - p_T^2)} = y^2 = \frac{1}{2} \ln x_1/x_2$
 - $q_i(x)$? $\bar{q}_i(x)$?

- $p_T^1 + p_T^2 \rightarrow p_T^z = p_T$ imbalance of incoming partons (LO) + hard radiation (HO)
 - what generates the transverse momentum distribution?
Discussed below:

- Measurements (2010, ~35 pb$^{-1}$)

- Interpretation
 - Monte Carlo tuning: ATL-PHYS-PUB-2011-015
 - PDF determination: arXiv:1203.4051
Cross sections (W)

- Event selections:
 - \(W \rightarrow e\nu \):
 - \(p_{T,e} > 20 \) GeV, \(|\eta_e| < 2.47 \), excluding \(1.37 < |\eta_e| < 1.52 \),
 - \(p_{T,\nu} > 25 \) GeV, \(m_T > 40 \) GeV
 - \(W \rightarrow \mu\nu \):
 - \(p_{T,\mu} > 20 \) GeV, \(|\eta_\mu| < 2.4 \), \(p_{T,\nu} > 25 \) GeV, \(m_T > 40 \) GeV

- ~135k events selected per channel; W+ and W- measured separately
- Backgrounds subtracted using Monte Carlo or data-driven methods
Cross sections (Z)

- Event selections:

 \(Z \rightarrow ee : \)
 \[
 p_{T,e} > 20 \text{ GeV}, \text{ both } |\eta_e| < 2.47, \\
 \text{excluding } 1.37 < |\eta_e| < 1.52, \\
 66 < m_{ee} < 116 \text{ GeV};
 \]

 \(Z \rightarrow \mu\mu : \)
 \[
 p_{T,\mu} > 20 \text{ GeV}, \text{ both } |\eta_\mu| < 2.4, \\
 66 < m_{\mu\mu} < 116 \text{ GeV}.
 \]

- \(~10k \text{ events selected per channel}\)

- “forward Z selection” in the electron channel: \(2.5 < \eta_2 < 4.9\)
Cross sections (Z)

- Event selections:

 $Z \rightarrow ee$:

 \[p_{T,e} > 20 \text{ GeV}, \text{ both } |\eta_e| < 2.47, \]

 excluding \(1.37 < |\eta_e| < 1.52 \),

 \(66 < m_{ee} < 116 \text{ GeV}; \)

 $Z \rightarrow \mu\mu$:

 \[p_{T,\mu} > 20 \text{ GeV}, \text{ both } |\eta_\mu| < 2.4, \]

 \(66 < m_{\mu\mu} < 116 \text{ GeV}. \)

- ~10k events selected per channel

- “forward Z selection” in the electron channel: \(2.5 < \eta_z < 4.9 \)

![Graphs showing energy distributions for Z production](graphs.png)
Cross sections

- Efficiency and acceptance corrections

 - Primary result: fiducial cross sections and distributions: efficiency/resolution corrected data, as close as possible to the experimental measurement. They feed the strong interaction studies downstream:

 \[
 \sigma_{\text{fid}} = \frac{N - B}{C_{W/Z} \cdot L_{\text{int}}}
 \]

 \[
 \eta_\ell = [0.00, 0.21, 0.42, 0.63, 0.84, 1.05, 1.37, 1.52, \\
 1.74, 1.95, 2.18, 2.47 (e) \text{ or } 2.40 (\mu)]
 \]

 \[
 y_{\nu\nu} = [0.0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.6]
 \]

 - Also extrapolated cross section (to full phase space), for comparison with existing theoretical calculations:

 \[
 \sigma_{\text{tot}} = \sigma_{W/Z} \times BR(W/Z \rightarrow \ell\nu/\ell\ell) = \frac{\sigma_{\text{fid}}}{A_{W/Z}}
 \]
Experimental results

- Longitudinal distributions
 - Z rapidity
 - Decay lepton pseudorapidity for W+ and W-

These processes are sensitive to different parton flavour configurations, which their combined interpretation allows to disentangle
Experimental results

- **Fiducial → total (extrapolated) cross sections**

 data are still less precise than single predictions, but more than differences among predictions: some model discrimination already

 fiducial cross sections provide better model discrimination than total cross sections
Experimental results

- Transverse momentum distributions

Z bosons

W bosons
Experimental Results

- Data seem to give a consistent picture
 - NLO predictions undershoot data at high $p_T^{W, Z}$, NNLO or higher-order ME predictions restore agreement: higher-order corrections to this distribution are important
 - Data allow to refine parton shower / resummation models (ATLAS W and Z channels compare consistently to ResBos, recently confirmed by CDF)

![Graph showing data and theory comparison](http://www-cdf.fnal.gov/physics/ewk/2011/zpt21/)
Applications: Monte Carlo tuning

- Data are exploited to refine the “tuning” of non-perturbative parameters entering our Monte Carlo programs
 - Refines the description of transverse distributions in W and Z events
 - Implications for cross section measurements (acceptance), and precision electroweak (M_W, where the Jacobians peaks need accurate description in order to be interpreted properly)
A long-lasting mystery in the proton structure is the strange density poorly constrained at Hera, where F_2 is mostly sensitive to the total $(u+c)$ and $(d+s)$ components. Particularly relevant at the LHC, where W & Z are produced in pp, and at low x, enhancing second generation contributions to the production rate.

ATLAS data (specifically, W asym and W/Z ratio) provide new insights on s:
A long-lasting mystery in the proton structure is the strange density

- Poorly constrained at Hera, where F_2 is mostly sensitive to the total $(u+c)$ and $(d+s)$ components
- Particularly relevant at the LHC, where W & Z are produced in pp, and at low x, enhancing second generation contributions to the production rate

ATLAS data provide new insights on s. Define $r_s = \frac{1}{2} (s + \bar{s})/d$:

At $Q = 1.9$ GeV:

At $Q = M_Z$:

$$r_s = 1.00 \pm 0.07_{\text{exp}} \pm 0.03_{\text{mod}}^{+0.04}_{-0.06_{\text{par}}} \pm 0.02_{\alpha_S} \pm 0.03_{\text{th}}$$

Atlas result based on Hera+W,Z data only, ~not affected by non-perturbative uncertainties (fragmentation, nuclear corrections)
Summary and perspectives

- 2010 data analyzed and digested: $\sqrt{s} = 7$ TeV; $\mathcal{L} = 35$ pb$^{-1}$
 - Percent level measurements, already constraining our uncertainties
 - Improved description of parton shower / resummation
 - New constraints on the strange density

- 2011 data measurements being finalized: $\sqrt{s} = 7$ TeV; $\mathcal{L} = 5$ fb$^{-1}$
 - Target precisions of few/mil, tightening the 2010 constraints
 - Major challenge to detector performance, in particular selection efficiencies

- 2012: $\sqrt{s} = 8$ TeV; $\mathcal{L} = 6$ fb$^{-1}$ and counting
 - Increase in energy provides new handles

"LHC Run1" will likely end with 20-30 fb$^{-1}$ of data collected by ATLAS

Unseen samples: 10^8 selected W events, 10^7 Z events

Providing knowledge of our detector, of QCD, and – ultimately – EW symmetry breaking