W & Z production at ATLAS

Feedback to the theory of strong interactions

M.Boonekamp, for the ATLAS Collaboration

W and Z production as a probe of strong interactions

Event reconstruction, kinematics

W and Z production as a probe of strong interactions

Probing the proton

• From detector-level to parton-level kinematics:

→
$$\frac{1}{2} \ln (E^{z}+p_{L}^{z})/(E^{z}-p_{L}^{z}) = y^{z} = \frac{1}{2} \ln x \frac{1}{x^{2}}$$

 $\rightarrow q_{i}(x)? \quad \overline{q}_{i}(x)?$

• $p_T^1 + p_T^2 \rightarrow p_T^2 = p_T$ imbalance of incoming partons (LO) + hard radiation (HO)

 \rightarrow what generates the transverse momentum distribution?

Discussed below:

- Measurements (2010, ~35 pb⁻¹)
 - Inclusive W and Z cross sections :
 - W transverse momentum distribution :
 - Z transverse momentum distribution :

Phys. Rev. D85 (2012) 072004 Phys.Rev. D85 (2012) 012005 Phys.Lett. B705 (2011) 415-434

- Interpretation
 - Monte Carlo tuning : ATL-PHYS-PUB-2011-015
 - PDF determination : arXiv:1203.4051

Cross sections (W)

- Event selections : $W \to e\nu$: $W \to e\nu$: $p_{T,e} > 20 \text{ GeV}, |\eta_e| < 2.47,$ excluding $1.37 < |\eta_e| < 1.52,$ $p_{T,\nu} > 25 \text{ GeV}, m_T > 40 \text{ GeV}$ $W \to \mu\nu$: $W \to \mu\nu$: $p_{T,\mu} > 20 \text{ GeV}, |\eta_{\mu}| < 2.4,$ $p_{T,\nu} > 25 \text{ GeV}, m_T > 40 \text{ GeV}$
 - ~135k events selected per channel; W+ and W- measured separately
 - Backgrounds subtracted using Monte Carlo or data-driven methods

Cross sections (Z)

- Event selections : $Z \to ee:$ $p_{T,e} > 20 \text{ GeV}, \text{ both } |\eta_e| < 2.47,$ excluding $1.37 < |\eta_e| < 1.52,$ $66 < m_{ee} < 116 \text{ GeV};$ $Z \to \mu\mu:$ $p_{T,\mu} > 20 \text{ GeV}, \text{ both } |\eta_\mu| < 2.4,$ $66 < m_{\mu\mu} < 116 \text{ GeV}.$
 - ~10k events selected per channel
 - "forward Z selection" in the electron channel : $2.5 < \eta_2 < 4.9$

Cross sections (Z)

- Event selections : $Z \to ee:$ $p_{T,e} > 20 \text{ GeV}, \text{ both } |\eta_e| < 2.47,$ $excluding \ 1.37 < |\eta_e| < 1.52,$ $66 < m_{ee} < 116 \text{ GeV};$ $Z \to \mu\mu:$ $p_{T,\mu} > 20 \text{ GeV}, \text{ both } |\eta_{\mu}| < 2.4,$ $66 < m_{\mu\mu} < 116 \text{ GeV}.$
 - ~10k events selected per channel
 - "forward Z selection" in the electron channel : $2.5 < \eta_2 < 4.9$

Cross sections

- Efficiency and acceptance corrections
 - Primary result : fiducial cross sections and distributions : efficiency/resolution corrected data, as close as possible to the experimental measurement. They feed the strong interaction studies downstream:

$$\sigma_{\rm fid} = \frac{N - B}{C_{W/Z} \cdot L_{\rm int}} \qquad \begin{array}{l} \eta_{\ell} = & [0.00, \, 0.21, \, 0.42, \, 0.63, \, 0.84, \, 1.05, \, 1.37, \, 1.52, \\ & 1.74, \, 1.95, \, 2.18, \, 2.47 \, (e) \, \, {\rm or} \, \, 2.40 \, (\mu) \,] \, ; \\ y_Z = & [0.0, \, 0.4, \, 0.8, \, 1.2, \, 1.6, \, 2.0, \, 2.4, \, 2.8, \, 3.6 \,] \, , \end{array}$$

 Also extrapolated cross section (to full phase space), for comparison with existing theoretical calculations:

$$\sigma_{\rm tot} = \sigma_{W/Z} \times BR(W/Z \to \ell\nu/\ell\ell) = \frac{\sigma_{\rm fid}}{A_{W/Z}}$$

Maarten Boonekamp, CEA

Experimental results

- Longitudinal distributions
 - Z rapidity
 - Decay lepton pseudorapidity for W+ and W-

 These processes are sensitive to different parton flavour configurations, which their combined interpretation allows to disentangle

Maarten Boonekamp, CEA

Experimental results

Fiducial → total (extrapolated) cross sections

data are still less precise than single predictions, but more than differences among predictions : some model discrimination already

fiducial cross sections provide better model discrimination than total cross sections

Experimental results

Transverse momentum distributions

Experimental Results

- Data seem to give a consistent picture
 - NLO predictions undershoot data at high p₁^{W,Z}, NNLO or higher-order ME predictions restore agreement: higher-order corrections to this distribution are important
 - Data allow to refine parton shower / resummation models (ATLAS W and Z channels compare consistently to ResBos, recently confirmed by CDF)

Applications : Monte Carlo tuning

- Data are exploited to refine the "tuning" of non-perturbative parameters entering our Monte Carlo programs
 - Refines the description of transverse distributions in W and Z events
 - Implications for cross section measurements (acceptance), and precision electroweak (M_w, where the Jacobians peaks need accurate description in order to be interpreted properly)

Maarten Boonekamp, CEA

Applications : PDF fits

- A long-lasting mystery in the proton structure is the strange density
 - Poorly constrained at Hera, where F2 is mostly sensitive to the total (u+c) and (d+s) components
 - Particularly relevant at the LHC, where W & Z are produced in pp, and at low x, enhancing second generation contributions to the production rate
- ATLAS data (specifically, W asym and W/Z ratio) provide new insights on **s**:

Applications : PDF fits

- A long-lasting mystery in the proton structure is the strange density
 - Poorly constrained at Hera, where F2 is mostly sensitive to the total (u+c) and (d+s) components
 - Particularly relevant at the LHC, where W & Z are produced in pp, and at low x, enhancing second generation contributions to the production rate
- ATLAS data provide new insights on **s**. Define $r_s = \frac{1}{2} (s + \overline{s})/\overline{d}$:

 Atlas result based on Hera+W,Z data only, ~not affected by non-perturbative uncertainties (fragmentation, nuclear corrections)

Maarten Boonekamp, CEA

Summary and perspectives

- 2010 data analyzed and digested : $\sqrt{s} = 7$ TeV; $\mathcal{L} = 35$ pb⁻¹
 - Percent level measurements, already constraining our uncertainties
 - Improved description of parton shower / resummation
 - New constraints on the strange density
- 2011 data measurements being finalized : $\sqrt{s} = 7$ TeV; $\mathcal{L} = 5$ fb⁻¹
 - Target precisions of few/mil, tightening the 2010 constraints
 - Major challenge to detector performance, in particular selection efficiencies
- 2012 : $\sqrt{s} = 8$ TeV; $\mathcal{L} = 6$ fb⁻¹ and counting
 - Increase in energy provides new handles

"LHC Run1" will likely end with 20-30 fb⁻¹ of data collected by ATLAS Unseen samples : 10⁸ selected W events, 10⁷ Z events Providing knowledge of our detector, of QCD, and – ultimately – EW symmetry breaking

Maarten Boonekamp, CEA