Tetraquark-based analysis and predictions ΙΝΓΝ of the cross sections and distributions for the processes $e^+e^- \rightarrow \Upsilon(1S)(\pi^+\pi^-, K^+K^-, \eta\pi^0)$ near $\Upsilon(5S)$ Satoshi Mishima (INFN Rome)

Ahmed Ali, Christian Hambrock and S.M., Phys. Rev. Lett. 106, 092002 (2011)

1. What are tetraquarks?

- A tetraquark consists of a colored diquark and a colored antidiquark. which are strongly bounded by QCD forces.

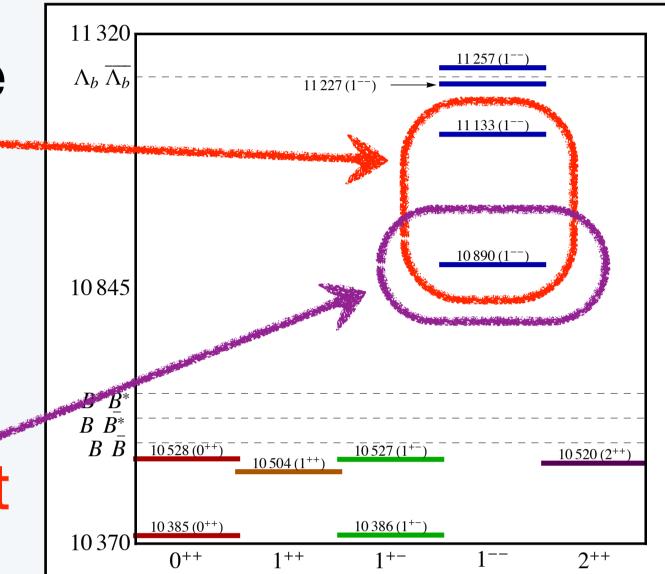
2. $[bq][\bar{b}\bar{q}]$ tetraquarks Ali et al. (10)

 Mass spectra have been calculated with the constituent diquark Hamiltonian:

 $H = 2m_{[bq]} + H_{SS}^{(qq)} + H_{SS}^{(q\bar{q})} + H_{SL} + H_{LL}$

• The diquark mass has been estimated by

cf. A hadronic molecule is a bound state of uncolored mesons, weekly bounded by pion exchanges.


• Two possible diquarks: Jaffe (05)

 $ig| qq; \; ar{3}_{c}(A) \; ar{3}_{f}(A) \; 0^{+}_{s}(A) ig
angle$ "good" diquark $ig| qq; \; ar{3}_{c}(A) \; 6_{f}(S) \; 1^{+}_{s}(S) ig
angle$ "bad" diquark

• The light-scalar nonet fits the tetraquark picture. Maiani et al. (04)

• Some of exotic $a_2^-=d\overline{u}$ ISOSPIN PROJECTION ISOSPIN PROJECTIC -1 -1/2 0 1/2 charmonium-like states, e.g., X(3872) and Y(4260), could be interpreted as tetraquarks. Maiani et al. (05) identifying Y_b(10890) as the lightest 1⁻⁻ state, or by scaling up the diquark mass determined from charmonium-like states, yielding $m_{[bq]} \sim 5.3$ GeV.

- The 1⁻⁻ states can be produced in e⁺e⁻ annihilations, in the range of the BaBar and Belle energies.
- There are two almost degenerate states

with $\Delta M \sim O(1)$ MeV. mixture of $Y_{[bu]}$ and $Y_{[bd]}$

 $\Upsilon(nS)$

3. Tetraquark interpretation of Y_b(10890)

qq NONET

• Belle observed anomalously huge cross sections for $e^+e^- \to \Upsilon(5S) \to \Upsilon(nS)\pi^+\pi^-$ (n = 1, 2, 3).

Process	$\Gamma_{e^+e^-}$	$\Gamma_{\Upsilon(1S)\pi^+\pi^-}$	Chen et al. [Belle] (08)
$\Upsilon(2S) ightarrow \Upsilon(1S) \pi^+ \pi^-$	$0.612 { m ~keV}$	$0.0060 { m MeV}$	
$\Upsilon(3S) o \Upsilon(1S) \pi^+\pi^-$	$0.443 { m ~keV}$	$0.0009 { m MeV}$	
$\Upsilon(4S) ightarrow \Upsilon(1S) \pi^+ \pi^-$	$0.272 \mathrm{\ keV}$	$0.0019 { m ~MeV}$	Larger by two-orders
$\Upsilon(5S) ightarrow \Upsilon(1S) \pi^+\pi^-$	$0.31 \ \mathrm{keV}$	$0.59 { m MeV}$	of magnitude!
			-

There may exist exotic tetraquark states $Y_b(10890)$ near $\Upsilon(5S)$.

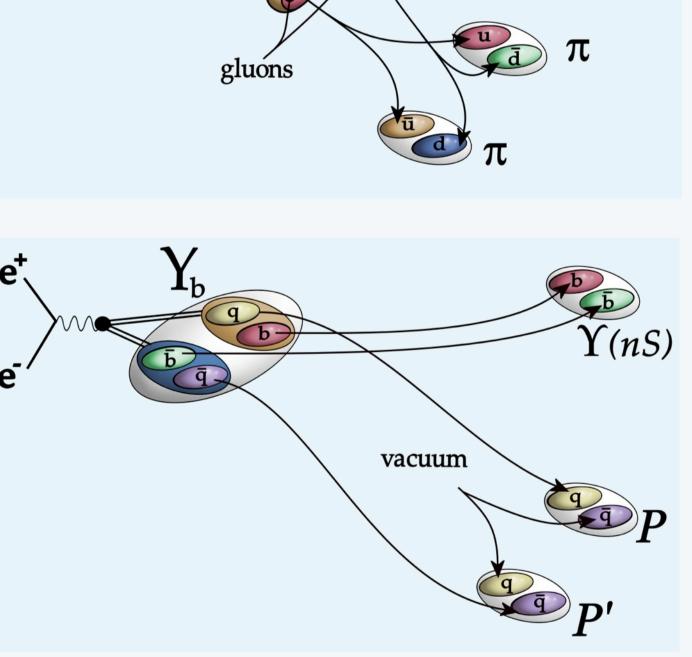
- $\Upsilon(nS) \to \Upsilon(mS)\pi^+\pi^-$ is Zweig forbidden, while $Y_b(10890) \rightarrow \Upsilon(mS)\pi^+\pi^-$ is Zweig allowed, which naturally explains huge cross sections. Ali, Hambrock, Aslam (10)
- Our estimate of the production rate is $\Gamma(Y_b \to e^+ e^-) \sim O(10)$ eV.
- Ali, Hambrock, S.M. (11) • The dominant decay modes of Y_b are $Y_b
 ightarrow B^{(*)}B^{(*)}$ which are however hard to be observed due to large $\sigma(e^+e^- \to \Upsilon(5S) \to B^{(*)}B^{(*)})$.

 $\widetilde{\eta}\widetilde{\sigma}_{K+K}$ 0.5

resonances

1.3

0.7 0.8

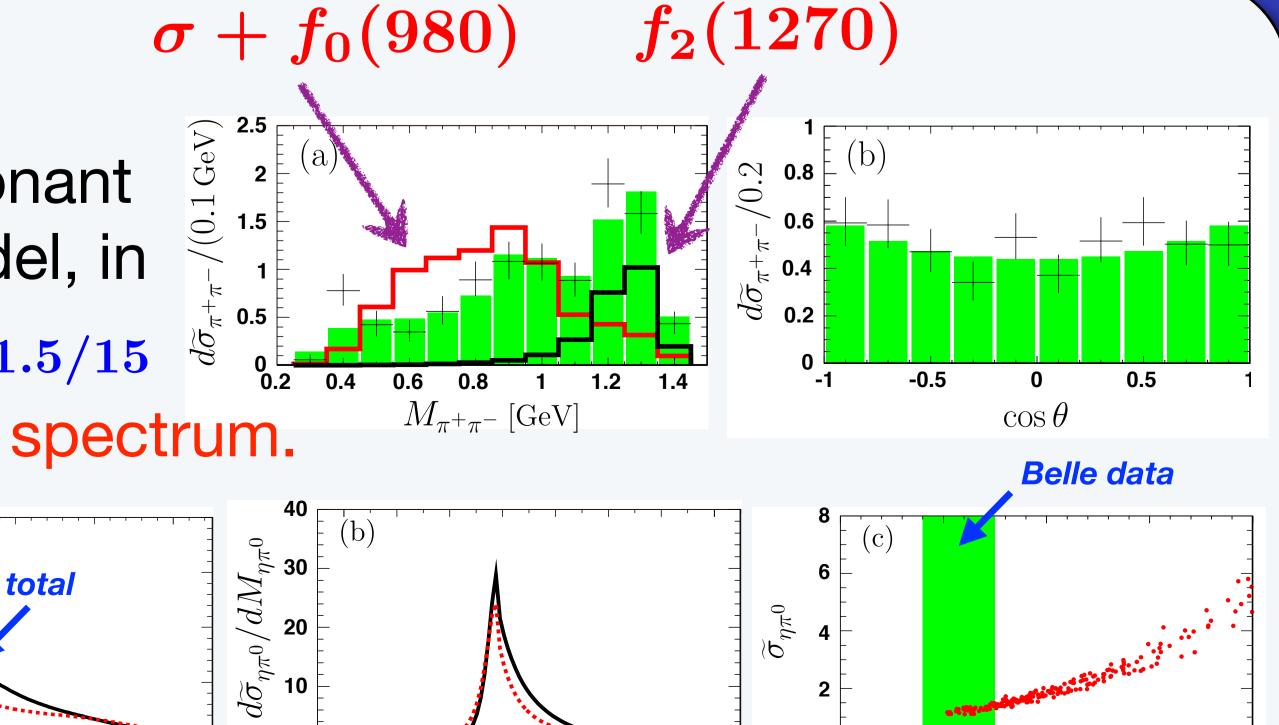

0.9

 $M_{\eta\pi^0}$ [GeV]

Cross sections are normalized by the measured $\sigma(\Upsilon(1S)\pi^+\pi^-)$.

1.2

 $M_{K^+K^-}$ [GeV]


 $\gamma(mS)$

4. Fit results and predictions

• We fit the $\Upsilon(1S)\pi^+\pi^-$ data, taking into account resonant contributions in the dipion system with the Flatté model, in addition to nonresonant contribution. $\chi^2/d.o.f. = 21.5/15$

Resonance dominance in the dipion invariant-mass spectrum.

• Using the fitted parameters, we make predictions for $e^+e^- \to Y_b \to \Upsilon(1S)K^+K^$ and $\Upsilon(1S)\eta\pi^0$, which are dominated by $f_0(980) + a_0(980)$ and $a_0(980)$, respectively.

1.1 1.2 1.3 1.4

0.1

0.2

 $\widetilde{\sigma}_{K^+K^-}$

0.3