Performance of the CMS electromagnetic calorimeter at the LHC and role in the hunt for the Higgs boson

Riccardo Paramatti (INFN Rome)

on behalf of

CMS Collaboration

ICHEP 2012

Melbourne – 6th July
Compact Muon Solenoid

Multipurpose experiment at the Large Hadron Collider.
~5+5 fb\(^{-1}\) of p-p data collected at 7 TeV (2011) and 8 TeV (2012) centre of mass energy with a peak lumi of 7\(\cdot \)10\(^{33}\) cm\(^{-2}\) s\(^{-1}\)

Outline:
- The Electromagnetic Calorimeter
- ECAL calibration
- e/\(\gamma\) energy resolution
CMS Electromagnetic Calorimeter

- Excellent energy (and position) resolution for photons and electrons ($H \rightarrow \gamma\gamma$, $H \rightarrow ZZ \rightarrow 4e$)
- Lead Tungstate (PbWO_4) homogenous crystal calorimeter
- Barrel (EB):
 - 36 Supermodules (SM), each 1700 crystals
 - $|\eta|<1.48$
 - APD photodetectors
- Endcaps (EE):
 - 2 Endcap sides, each 7324 crystals
 - $1.48<|\eta|<3.0$
 - VPT photodetectors
- Preshower (ES):
 - sampling calorimeter (lead, silicon strips)
 - $1.65<|\eta|<2.6$
- Fraction of working channels stable in the last three years:
 - EB 99.2%, EE 98.5%, ES 96.9%
Electromagnetic trigger

- Electron and photon selection in CMS starts with the online selection.
- The plot shows the Level-1 e/γ trigger efficiency (nominal 15 GeV threshold) for electrons from Z decay estimated with Tag & probe method.
- Transparency corrections not applied at trigger level in 2011 data-taking (applied since the beginning of 2012).

<table>
<thead>
<tr>
<th>EG15</th>
<th>EB</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>50%</td>
<td>16.06^{+0.04}_{-0.03} GeV</td>
<td>19.05^{+0.05}_{-0.06} GeV</td>
</tr>
<tr>
<td>95%</td>
<td>22.46^{+0.04}_{-0.05} GeV</td>
<td>27.06^{+0.58}_{-0.43} GeV</td>
</tr>
<tr>
<td>99%</td>
<td>28.04^{+0.07}_{-0.10} GeV</td>
<td>34.57^{+1.48}_{-1.10} GeV</td>
</tr>
<tr>
<td>100 GeV</td>
<td>99.95^{+0.01}_{-0.88} %</td>
<td>99.84^{+0.10}_{-0.28} %</td>
</tr>
</tbody>
</table>
Energy resolution challenge

- ECAL «standalone» energy resolution measured at the test beam: (3x3 arrays of barrel crystals in the absence of magnetic field, with no material in front of the calorimeter and negligible inter-calibration contribution in the constant term)

\[
\frac{\sigma(E)}{E} = \frac{2.8\%}{\sqrt{E\text{ (GeV)}}} \oplus \frac{0.128}{E\text{ (GeV)}} \oplus 0.3\%
\]

- Results used to tune MC simulation.
- In-situ, for unconverted photons with energies in the range of interest for physics analyses, ~100 GeV, the in-situ constant term dominates.
- Constant term in-situ strongly depends on the quality of the stability, calibration and monitoring.
- Asymptotically to be kept at ~0.5%
Measurement of electron/photon energy:

\[E_{e,\gamma} = F_{e,\gamma} \cdot \sum_{xtal} (G \cdot C_{xtal} \cdot L_{xtal}(t) \cdot A_{xtal}) \]

- \(A_{xtal} \) [ADC counts] → signal channel amplitude
- \(L_{xtal} \) → laser monitoring correction (time dependent)
- \(C_{xtal} \) → crystal inter-calibration (\(\langle C_{xtal} \rangle = 1 \))
- \(G \) [GeV/ADC] → ECAL energy scale
- \(\Sigma \) → e.m. shower, energy deposited over several crystals clustered with dynamic algorithms
- \(F \) → cluster energy corrections
 - particle dependent
 - compensate shower leakage and bremsstrahlung losses for electrons
ECAL response monitoring

Radiation → Wavelength-dependent loss of light transmission (w/o changes in scintillation)

Crystal Transparency *drops* within a run by a few percent but *recovered* in the inter-fill periods

- Inject fixed amount of light to monitor transparency loss
- Response loss up to 5% in EB and 30%-50% in EE (20% in the electron acceptance region $|\eta| < 2.5$)
ECAL response stability

Stability of the energy scale after monitoring corrections with W+ν events.

- Barrel: average signal loss ~2.5%
 RMS stability ~0.12%
- Endcaps: average signal loss ~10%
 RMS stability ~0.45%
- 2012 prompt reco:
 Barrel RMS stability ~0.19%

Stability of the ECAL resolution from Zee invariant mass peak.

- Barrel: resolution stable within errors.
- Endcaps: worsening of ~1.5% in quad.
 (residual PU effect)
Crystal Inter-calibration

Several methods to calibrate (and follow-up) in-situ:

- **φ-symmetry calibration**: invariance around the beam axis of energy flow in minimum bias events. Intercalibrate crystals at the same pseudorapidity.
- **π⁰ and η calibration**: mass constraint on photon energy, use unconverted γ’s reconstructed in 3x3 matrices of crystals.
- **High energy electron** from W and Z decays (E/p with single electrons and invariant mass with double electrons).

The precision (not yet asymptotic at |η|>1) is strongly related to the material in front of ECAL.
ECAL Calibration

- Zee invariant mass distribution applying:
 - channel Inter-Calibration
 - IC and Laser Monitoring corrections
Cluster Energy corrections vs pseudo-rapidity for non-showering and showering electrons.

- compensate for unclustered energy and energy not reaching the calorimeter: strongly related to the amount of material in front of ECAL.
- energy lost inside gaps: intermodule boundary visible in the Barrel

Reconstructed energy as a function of the local position of the most energetic crystal in the cluster, with E/p method.

- MC driven corrections not sufficient to correct the data
- crystal staggering variation along η (bigger in module 4)
Energy scale and resolution with $Z\rightarrow ee$ events

- Fit of the Z invariant mass shape with convolution of Breit-Wigner (fixed PDG mass and width) and Crystal Ball (CB).
- Energy scale and resolution estimated with CB parameters.
- Cross-check of energy scale with radiative $Z\mu\mu$ events.
- An extra energy smearing is applied to the MC to match the observed resolution of the $Z\rightarrow ee$ peak in data (additional contribution in the constant term).

Golden category (both electrons in EB and low-brem):
$\sigma_{CB} = 1.01$ GeV

Both electrons in EB:
$\sigma_{CB} = 1.56$ GeV

Both electrons in EE:
$\sigma_{CB} = 2.57$ GeV
Z electrons energy resolution

Double effort continuously ongoing to:

1. Improve the energy resolution both in Data and MC: inter-calibration precision, optimization of cluster corrections.
2. Reduce/nullify the difference between data and MC due to contributions possibly not fully simulated (improvement observed in laser correction stability, tuning of the material simulation, etc).
Evolution of CMS $H \rightarrow \gamma \gamma$ invariant mass resolution

Inclusive H_{gg} invariant mass distribution after the MC energy smearing

- **July 2011 EPS**
 - 2011 Zee data (re-reconstructed with improving conditions)
 - FWHM/2.35 = 1.80 GeV (1.50%)

- **March 2012 Moriond**
 - FWHM/2.35 = 1.40 GeV (1.17%)

- **July 2012 ICHEP**
 - 2012 data (prompt reco)
 - FWHM/2.35 = 1.57 GeV (1.31%)

Golden category (both photons in EB and unconverted)

- FWHM/2.35 = 1.04 GeV (0.87%)
The excellent ECAL performance of the last two years is visibly demonstrated by this historic plot from the CMS 4th July Higgs search presentation.
References

- P. Adzic et al. (CMS ECAL), *Intercalibration of the barrel electromagnetic calorimeter of the CMS experiment at start-up*, J.Inst. 3 P10007 (2008)
No time for...
ECAL stability

- Fraction of working channels stable in the last three years: **EB 99.2%, EE 98.5%, ES 96.9%**

- **Temperature stability:**
 - crystal light yield and APD gain are temperature dependent.
 - negligible contribution to the energy resolution constant term if temperature of the Barrel/Endcap stable within 0.05 °C/0.1 °C (VPT are stable in temperature).

- **High Voltage stability (EB):**
 - APD gain very sensitive to the bias voltage: 3%/Volt
 - Stability < 60 mV is required to provide a negligible contribution to the constant term of the energy resolution.
 - High Voltage stability well within allowed limits
Alignment (in time and space)

- Timing fundamental in exotic long lived particle searches and in anomalous signal rejection.
- Time difference between the seed crystals for the two Z electrons.
- The time resolution for a single ECAL crystal, for the energy range of electrons from Z decays, is 0.19/0.28 ns in EB/EE.
- No longitudinal segmentation of ECAL → Photon direction from shower position and identification of the interaction vertex
- Relative alignment of the ECAL crystals and the CMS tracker measured using electrons from Z→ee and W→ev events.
- Position resolution ≤ 1 mm
Pre-calibration Campaign

A very intense 10 years long pre-calibration campaign. Several orders of magnitude in energy: from 1 MeV of Co60 source to 120 GeV electron beam.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel intercalibration with cosmic muons (only Barrel SMs) (2006-2007)</td>
<td>Beam Splash: In September 2008 and November 2009, beam was circulated in LHC, stopped in collimators 150m away from CMS</td>
</tr>
</tbody>
</table>

Beam Splash:
In September 2008 and November 2009, beam was circulated in LHC, stopped in collimators 150m away from CMS.
Optimal clustering

- Zee invariant mass distribution with optimal ECAL clustering
2012 ECAL performance

Single electron energy scale (E/p) stability in the ECAL barrel measured using Wν events in prompt Reco.

- **RMS stability after Laser Monitoring corrections: 0.19%**
 - was 0.12% in the final rereco of 2011 data (0.45% in EE).