Performance of the CMS electromagnetic calorimeter at the LHC and role in the hunt for the Higgs boson

Riccardo Paramatti (INFN Rome)
on behalf of
CMS Collaboration

ICHEP 2012

Melbourne – 6th July

Compact Muon Solenoid

Multipurpose experiment at the Large Hadron Collider.

~5+5 fb⁻¹ of p-p data collected at 7 TeV (2011) and 8 TeV (2012) centre of mass energy with a peak lumi of $7 \cdot 10^{33}$ cm⁻² s⁻¹

Outline:

- The Electromagnetic Calorimeter
- ECAL calibration
- e/γ energy resolution

- Lead Tungstate (PbWO₄)
 homogenous crystal calorimeter
- Barrel (EB):
 - 36 Supermodules (SM), each 1700 crystals
 - $0 |\eta| < 1.48$
 - APD photodetectors
- Endcaps (EE):
 - 2 Endcap sides, each 7324 crystals
 - \circ 1.48<| η |<3.0
 - VPT photodetectors
- Preshower (ES):
 - sampling calorimeter (lead, silicon strips)
 - o 1.65<|η|<2.6
- Fraction of working channels stable in the last three years: EB 99.2%, EE 98.5%, ES 96.9%

Electromagnetic trigger

- Electron and photon selection in CMS starts with the online selection.
- The plot shows the Level-1 e/γ
 trigger efficiency (nominal 15
 GeV threshold) for electrons
 from Z decay estimated with Tag
 & probe method.
- Transparency corrections not applied at trigger level in 2011 data-taking (applied since the beginning of 2012).

EG15	EB	EE
50%	$16.06^{+0.01}_{-0.01}~{ m GeV}$	19.05 ^{+0.05} _{-0.06} GeV
95%	22.46 ^{+0.04} _{-0.05} GeV	27.06 ^{+0.58} _{-0.43} GeV
99%	$28.04^{+0.07}_{-0.10}~{ m GeV}$	34.57 ^{+1.48} _{-1.10} GeV
100 GeV	$99.95^{+0.01}_{-0.88}~\%$	$99.84^{+0.10}_{-0.28}~\%$

Energy resolution challenge

■ ECAL «standalone» energy resolution measured at the test beam: (3x3 arrays of barrel crystals in the absence of magnetic field, with no material in front of the calorimeter and negligible inter-calibration contribution in the constant term)

$$\frac{\sigma(\mathrm{E})}{\mathrm{E}} = \frac{2.8\%}{\sqrt{\mathrm{E}(\mathrm{GeV})}} \oplus \frac{0.128}{\mathrm{E}(\mathrm{GeV})} \oplus 0.3\%$$

- Results used to tune MC simulation.
- In-situ, for unconverted photons with energies in the range of interest for physics analyses, ~100 GeV, the in-situ constant term dominates.
- Constant term in-situ strongly depends on the quality of the stability, calibration and monitoring.
- Asymptotically to be kept at ~0.5%

e/γ energy with ECAL

Measurement of electron/photon energy:

$$E_{e,\gamma} = F_{e,\gamma} \cdot \sum_{xtal} (G \cdot C_{xtal} \cdot L_{xtal} (t) \cdot A_{xtal})$$

- A_{xtal} [ADC counts] \rightarrow signal channel amplitude
- L_{xtal} → laser monitoring correction (time dependent)
- $C_{xtal} \rightarrow crystal inter-calibration (<math>C_{xtal} > 1$)
- $G [GeV/ADC] \rightarrow ECAL energy scale$
- $\Sigma \rightarrow$ e.m. shower, energy deposited over several crystals clustered with dynamic algorithms
- \blacksquare F \rightarrow cluster energy corrections
 - o particle dependent
 - compensate shower leakage and bremsstrahlung losses for electrons)

Radiation \square Wavelength-dependent loss of light transmission (w/o changes in scintillation)

Crystal Transparency drops within a run by a few percent but recovers in the inter-fill periods

- Inject fixed amount of light to monitor transparency loss
- Response loss up to 5% in EB and 30%-50% in EE (20% in the electron acceptance region $|\eta| < 2.5$)

ECAL response stability

Stability of the energy scale after monitoring corrections with Wev events.

- Barrel: average signal loss ~2.5% RMS stability ~0.12%
- Endcaps: average signal loss ~10% RMS stability ~0.45%
 - 2012 prompt reco:
 Barrel RMS stability ~0.19%

Stability of the ECAL resolution from Zee invariant mass peak.

- Barrel: resolution stable within errors.
- Endcaps: worsening of ~1.5% in quad. (residual PU effect)

Crystal Inter-calibration

- Several methods to calibrate (and follow-up) in-situ:
 - φ-symmetry calibration: invariance around the beam axis of energy flow in minimum bias events. Intercalibrate crystals at the same pseudorapidity.
 - ο $π^0$ and η calibration: mass constraint on photon energy, use unconverted γ's reconstructed in 3x3 matrices of crystals.
 - **High energy electron** from W and Z decays (E/p with single electrons and invariant mass with double electrons).

The precision (not yet asymptotic at $|\eta| > 1$) is strongly related to the material in front of ECAL

ECAL Calibration

- Zee invariant mass distribution applying :
 - channel Inter-Calibration
 - IC and Laser Monitoring corrections

Cluster Energy Corrections

Cluster Energy corrections vs pseudo-rapidity for non-showering and showering electrons.

- compensate for unclustered energy and energy not reaching the calorimeter: strongly related to the amount of material in front of ECAL.
- energy lost inside gaps: intermodule boundary visible in the Barrel

Reconstructed energy as a function of the local position of the most energetic crystal in the cluster, with E/p method.

- MC driven corrections not sufficient to correct the data
- crystal staggering variation along η (bigger in module 4)₁₁

Energy scale and resolution with Z→ee events

- Fit of the Z invariant mass shape with convolution of Breit-Wigner (fixed PDG mass and width) and Crystal Ball (CB).
- Energy scale and resolution estimated with CB parameters.
- Cross-check of energy scale with radiative Zμμ events.
- An extra energy smearing is applied to the MC to match the observed resolution of the $Z\rightarrow$ ee peak in data (additional contribution in the constant term).

Golden category (both electrons in EB and low-brem):

 $\sigma_{\rm CB}$ = 1.01 GeV

Both electrons in EB: $\sigma_{CB} = 1.56 \text{ GeV}$

Both electrons in EE: $\sigma_{CB} = 2.57 \text{ GeV}$

Z electrons energy resolution

Double effort continuously ongoing to:

- Improve the energy resolution both in Data and MC: inter-calibration precision, optimization of cluster corrections.
- 2. Reduce/nullify the difference between data and MC due to contributions possibly not fully simulated (improvement observed in laser correction stability, tuning of the material simulation, etc).

-Evolution of CMS H→γγ invariant mass resolution

Inclusive Hgg invariant mass distribution after the MC energy smearing

July 2011 March 2012 July 2012 July 2012 **EPS** Moriond **ICHEP ICHEP** 2011 Zee data (<u>re-reconstructed</u> with improving conditions) 2012 data (prompt reco) FWHM/2.35 =FWHM/2.35 = FWHM/2.35 =FWHM/2.35 =1.40 GeV (1.17%) 1.35 GeV (1.13%) 1.80 GeV (1.50%) 1.57 GeV (1.31%)

Golden category (both photons in EB and unconverted) FWHM/2.35= 1.04 GeV $(0.87\%)_{14}$

References

- CMS Coll., ECAL 2011 performance results, CMS-DP-2012-007 and CMS-DP-2012-008 (2012)
- CMS Coll., Electromagnetic calorimeter calibration with 7 TeV data, CMS-PAS-EGM-2010-003 (2010)
- CMS Coll., *Electromagnetic calorimeter commissioning and first results with 7 TeV data*, CMS NOTE-2010/012 (2010)
- CMS coll., *Performance and operation of the CMS electromagnetic calorimeter*, J.Inst. 5 T03010 (2010)
- P.Adzic et al. (CMS ECAL), Intercalibration of the barrel electromagnetic calorimeter of the CMS experiment at start-up, J.Inst. 3 P10007 (2008)
- P.Adzic et al. (CMS ECAL), Energy resolution of the barrel of the CMS Electromagnetic Calorimeter, J.Inst. 2 P04004 (2007)
- M. Anfreville et al., Laser monitoring system for the CMS lead tungstate crystal calorimeter, NIM A594 (2008) 292-320
- CMS coll., Physics Tech. Design Report, Vol. I, CERN-LHCC-2006-001 (2006) CERN

No time for...

ECAL stability

- Fraction of working channels stable in the last three years: EB 99.2%, EE 98.5%, ES 96.9%
- Temperature stability:
 - crystal light yield and APD gain are temperature dependent.
 - negligible contribution to the energy resolution constant term if temperature of the Barrel/Endcap stable within 0.05 °C/0.1 °C (VPT are stable in temperature).

Temperature stability of the ECAL Barrel and Endcap detectors.

- High Voltage stability (EB):
 - o APD gain very sensitive to the bias voltage: 3%/Volt
 - Stability < 60 mV is required to provide a negligible contribution to the constant term of the energy resolution.
 - High Voltage stability well within allowed limits

Alignment (in time and space)

- Timing fundamental in exotic long lived particle searches and in anomalous signal rejection.
- Time difference between the seed crystals for the two Z electrons.
- The time resolution for a single ECAL crystal, for the energy range of electrons from Z decays, is 0.19/0.28 ns in EB/EE.

- No longitudinal segmentation of ECAL → Photon direction from shower position and identification of the interaction vertex
- Relative alignment of the ECAL crystals and the CMS tracker measured using electrons from Z→ee and W→ev events.
- Position resolution ≤ 1 mm

Pre-calibration Campaign

A very intense 10 years long pre-calibration campaign. Several orders of magnitude in energy: from 1 MeV of Co⁶⁰ source to 120 GeV electron beam.

Laboratory measurements during crystal qualification phase. (2000-2006)

Test Beam: Cern electron beams.

From 15 GeV to 250 GeV. (2004-2007)

Channel intercalibration with cosmic muons (only Barrel SMs)

(2006-2007)

Beam Splash: In September 2008 and November 2009, beam was circulated in LHC, stopped in collimators 150m away from CMS

Optimal clustering

 Zee invariant mass distribution with optimal ECAL clustering

2012 ECAL performance

Single electron energy scale (E/p) stability in the ECAL barrel measured using Wev events in prompt Reco.

- RMS stability after Laser Monitoring corrections: 0.19%
 - o was 0.12% in the final rereco of 2011 data (0.45% in EE).

