

Operation and Performance of the CMS Silicon Tracker

Erik Butz

Massachussetts Institute of Technology on behalf of the CMS collaboration

ICHEP 2012

2012-07-06

The CMS Silicon Trackers

Pixels 1.1 m² silicon 1440 modules 3 layers 2 disks 66 M channels ~97% working fraction

+ Strips

198 m² silicon
15148 modules
10 layers/12 disks
4 stereo hits
9.6 M channels
97.5% working fraction

= CMS Tracker together with 3.8 T magnetic field $\sigma(\text{pt})/\text{pt} \sim 1-2\%$ (pt \sim 100 GeV)

IP resolution: ${\sim}10{\text{-}}20\mu{
m m}$

16588 Modules \rightarrow R.Castello: Alignment methods 11:15 this track

Detector status in 2012

Total Integrated Luminosity (fb ⁻¹)

- 92.5 % overall data-taking efficiency
- higher than in 2011 despite higher luminosity

- tracker share of lost lumi 29 %
- 16 % strips, 12 % pixels, 1 % power supplies

- cooling running stable at 4°C (strips) and -10°C (pixels), respectively
- power supplies, detector control system and other services running very stable
- $\rightarrow\,$ both detectors running well in 2012 with increased energy and pile-up

Radiation monitoring

- Acquired radiation dose close to 13 $\rm fb^{-1}$
- Regular measurements of radiation related quantities performed both with *pp* collisions and without
- Leakage current ($I_{\rm leak})$ measured using power supply current and detector control units (DCUs)
- Depletion voltage (V $_{\rm depl}$)
 - noise scans using random triggers with no beam
 - signal scans using particles from pp collisions
 - full scans (typically after technical stops)
 - small scans on representative power groups 1/month

Radiation monitoring

 Comparing Fluka simulation to leakage current measurements (strip tracker only, corrected for sensor temperature)

Radiation monitoring

- CMS uses multi-stage iterative tracking
- subsequent steps with typically relaxed seeding
- $\rightarrow\,$ recovering inefficiencies from earlier iterations
- $\rightarrow\,$ removing hits on tracks earlier iterations reduces combinatorics at each step
 - later iterations are looking for more complicated tracks (lower p_T , displaced tracks, etc...)
 - seeds are constructed from
 - pixel triplets
 - 2 mixed pairs (pixel || strips) + vertex
 - 3 mixed triplets
 - 4 strip pairs
 - The main tracking algorithm is based on pixel seeds and uses a Kalman filter.

Tracking efficiency

- efficiency for isolated muons very close to 100% for $|\eta|$ < 2.4
- single pions with efficiencies above 90 (80)% in the barrel (endcap) region for $p_{\,{\cal T}}\,>\,500$ MeV

Vertexing

Vertexing

Erik Butz, MIT

Summary and Outlook

- CMS silicon tracking detectors with high uptime and data quality during 2010/11/12 data taking
- tracking and vertexing with high efficiency and very good resolution
- regular measurements of radiation related quantities to follow evolution of detector parameters over the lifetime of the experiment

Summary and Outlook

... and all of that to get things like this:

Erik Butz, MIT

- scanning delay setting to maximize cluster size (black dots)
- chose working point away from edges of efficiency plateau (red)

- scanning \pm 10 ns around
- current setting
- centered around zero within ±1 ns
- ightarrow well timed in

Tracking efficiency

