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Extra Dimensions

String Theory Braneworld



Motivations

Why domain walls?

I It is a bottom-up approach, contrasting with the top-down
string-theory philosophy.

I It uses field theory only, including for the origin of the brane.

I All spatial dimensions on equal footing in the action.

I Davies, George and Volkas proposed a 4+1D domain-wall
braneworld model with an SU(5) gauge group broken to the
Standard Model on the domain wall. It was shown that this
model could generate charged fermion spectra, light neutrinos
and quark mixing naturally using the split fermion mechanism
which arises in the model.



Motivations

Why add an A4 flavour symmetry?

I It was shown that neutrino mixing could not be accounted for
in the same model with the desired regime to generate all
other fermion mass spectra.

I Flavour symmetries are a popular approach. Perhaps impose
an additional A4 symmetry?

I Scalars can also be split in our model; solution to the vacuum
alignment problem?



The background DW

I To set up the domain-wall kink, we need a singlet scalar field
η with a Z2-symmetric Higgs potential with two distinct,
degenerate minima.

I In order to confine gauge bosons on the domain wall, we
invoke the Dvali-Shifman mechanism which relies on
non-perturbative confinement dynamics in 4+1D. To facilitate
this mechanism, we need to embed the Standard Model into a
GUT gauge group G, and we need a field which has a vacuum
expectation value that tends to zero out to infinity in the bulk
but attains a non-zero value on the wall in order to break the
G to the SM.

I Make the minimal choice, G = SU(5) and add an adjoint
scalar field χ ∼ 24



The background DW
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After writing the Z2-symmetric
Higgs potential for η and χ, ar-
range the global minima

〈η〉 = ±v, 〈χ〉 = 0,

use them as boundary condi-
tions, solve the Euler-Lagrange
equations to get, e.g.

η(y) = v tanh(ky),

χ1(y) = A sech(ky).

This simple analytical solution holds on a certain parameter slice.
Off that slice, similar solutions exist but must be obtained
numerically.



Choosing our A4 representations: Fermions

I Need to assign fermions to representations (RSU(5), RA4)

I Ψ5 ∼ (5∗, 1) Ψ′5 ∼ (5∗, 1′) Ψ′′5 ∼ (5∗, 1′′)

I Ψi
10 ∼ (10, 1) for i = 1, 2, 3

I To generate the desired mixing patterns, we place the
right-handed neutrinos into an A4-triplet, N ∼ (1, 3).



Fermion charge assignment and localisation

Next, we Yukawa couple the fermions to η and χ:

YDW = h5ηΨR
5 ΨR

5 η + h5χΨR
5 χ

TΨR
5

+ hij10ηTr(Ψi
10Ψ

j
10)η − 2hij10χTr(Ψi

10χΨj
10)

+ h1η(NN)1η.

The background fields you use in the 5d Dirac Eq. are:

bnY (y) ≡ hnηη(y) +

√
3

5

Y

2
hnχχ1(y).

SM components of different hypercharge Y couple to different
linear combinations of η(y) and χ1(y). Fermions are split, but not
arbitrarily.



Fermion localisation
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Choosing our A4 representations: Scalars

I To generate the requisite Yukawa interactions in the charged
fermion sector, with mixing at tree level, we introduce:

Φ ∼ (5∗, 1) Φ′ ∼ (5∗, 1′) Φ′′ ∼ (5∗, 1′′)

I To generate Dirac masses for the neutrinos, we introduce:

ρ ∼ (5∗, 3)

I To generate the desired off-diagonal Majorana mass terms to
generate approximate tribimaximal mixing, we introduce:

ϕ ∼ (1, 3)



Scalar localisation and EW symmetry breaking

The quintet scalars contain electroweak and coloured scalar
components ΦR

w and ΦR
c . Yukawa couple them to fermions in the

usual way.

You do a mode decomposition, and are interested in the lowest
modes:

Φw,c(x, y) = pw,c(y)φw,c(x)

You write the Higgs potential, plug the above into the
Euler-Lagrange Eqs., get effective Schrödinger Eqs. for the profiles
p(y).



Scalar localisation and EW symmetry breaking
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Scalar trapping potentials Generic scalar modes

The pw well is deeper (due to parameter region chosen) and gets a
negative evalue m2

w triggering spontaneous EW symmetry
breaking.



Scalar localisation and EW symmetry breaking

I Localisation potential for ϕ similar, but always with a
potential minimum about y = 0 (hence ϕ always localised
there).

I As with the electroweak components of the quintets, we can
choose parameters such that ϕ attains a tachyonic mass on
the wall.



EW Yukawa Lagrangian

I

YEW = hi−(Ψ5)CΨi
10Φ + h′i−(Ψ

′
5)
CΨi

10Φ
′′ + h′′i− (Ψ

′′
5)CΨi

10Φ
′

+ hij+ε
αβγκδ(Ψi

10)
C
αβΨj

10(Φδ)
∗

+ hρΨ5(ρN)1 + h′ρΨ
′
5(ρN)1′ + h′′ρΨ

′′
5(ρN)1′′

+M(NNC)1 + hϕ
[
(NNC)3s.ϕ

]
1

+ h.c.



Fermion Mass Fitting
I Generically, in this model, the masses of the localised fermions

in the effective theory on the wall are of the form

m = h〈H〉
∫
fL(y)fR(y)pw(y)dy

I We can generate the correct charged fermion masses which
has a spread of roughly 12 orders of magnitude with a set of
(non-dimensionalised) domain wall background and
electroweak Yukawas ranging from roughly 100 to about 800.
This occurs since the splitting of the fermions lead to
exponential suppressions from the overlap integrals.

I

ΘCKM
12 = 13.0◦, ΘCKM

13 = 0.201◦, ΘCKM
23 = 2.39◦.

I

ΘeL
12 = 7.32× 10−2 ◦, ΘeL

13 = 4.15× 10−3 ◦, ΘeL
23 = 0.925◦.

This will prove to be important for generating the correct
lepton mixing patterns.



Neutrino Mass Matrices

I For the localised electroweak component of ρ, ρw, we assign a
VEV of the alignment 〈ρw〉 = (vρ, vρ, vρ)

I This leads to a Dirac neutrino mass matrix of the form:

Mν,Dirac =

mρ mρ mρ

m′ρ ωm′ρ ω2m′ρ
m′′ρ ω2m′′ρ ωm′′ρ

 ,

=


√

3mρ 0 0

0
√

3m′ρ 0

0 0
√

3m′′ρ

 .U(ω),



Neutrino Mass Matrices

I For the localised mode of the A4 triplet ϕ, ϕ0, we assign a VEV
〈ϕ0〉 = (0, vϕ, 0)

I This leads to a Majorana mass matrix of the form:

Mν,Majorana =

M 0 Mϕ

0 M 0
Mϕ 0 M

 ,

I Here, Mϕ = hϕvϕ
∫
f2N (y)pϕ0(y) dy



Neutrino Mass Matrices

I Mν,Majorana is diagonalized by the matrix

P =
1√
2

1 0 −1

0
√

2 0
1 0 1

 .



Neutrino Masses and Lepton Mixing

I Since ML ≈ −Mν,DiracM
−1
ν,MajoranaM

T
ν,Dirac, under the

assumption that mρ = m′ρ = m′′ρ, we get the left neutrino
diagonalization matrix to be

VνL = U(ω)†P,

=


2√
6

1√
3

0

− ω√
6

ω√
3
− eiπ/6√

2

− ω2
√
6

ω2
√
3

e5iπ/6√
2

 .

I We already generated electron mass textures such that VeL ∼ 1,
hence we have obtained tribimaximal lepton mixing. Deviating
from VeL ∼ 1 and breaking the assumption mρ = m′ρ = m′′ρ will
lead to deviations from tribimaximal mixing.

I Left neutrino mass eigenvalues are
−3m2

ρ

M+Mϕ
,
−3m2

ρ

M , and
−3m2

ρ

M−Mϕ
.



Neutrino Masses and Lepton Mixing

I With
M = 2.86 TeV, Mϕ = 2.26 TeV,

get the left neutrino eigenstate masses to be

m1 =

∣∣∣∣∣ −3m2
ρ

M +Mϕ

∣∣∣∣∣ = 5.86× 10−3 eV,

m2 =

∣∣∣∣∣−3m2
ρ

M

∣∣∣∣∣ = 0.0105 eV,

m3 =

∣∣∣∣∣ −3m2
ρ

M −Mϕ

∣∣∣∣∣ = 0.0504 eV,



Vacuum alignment

I ρ breaks A4 → Z3 and ϕ breaks A4 → Z2

I When cross-talking interactions switched on, troublesome
interactions such as (ρ†ρ)1′(ϕϕ)1′′ occur. The vevs of ρ and ϕ
tend to align due to these interactions.

I It turns out we can naturally suppress these interactions by many
orders of magnitude splitting the profiles of these scalars. This
preserves the desired alignment up to some small corrections.



Vacuum alignment
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Conclusion

I We have constructed a 4+1D SU(5)×A4 domain-wall braneworld
model and localised fermions and scalars. These fermions and
scalars are naturally split.

I By choosing the appropriate A4 representations and splittings for
the fermions, we were able to generate the fermion mass hierarchy,
quark mixing as well as large lepton mixing angles.

I By splitting the A4 triplet scalars we were able to solve the
vacuum alignment problem.


