

Top quark properties at CDF

ICHEP 2012 (Melbourne)

4-11/July/2012

Youngdo Oh (Kyungpook National University)

On behalf of the CDF Collaborations

Outline

- Top quark branching ratio and width
- Spin correlations in top-antitop event
- Helicity fraction of W boson
- top quark charge
- top forward-backward asymmetry

Run II at CDF

ICHEP2012

Youngdo Oh

Top quark

- Top quark properties
 - high mass ~ 173.5 GeV (PDG)
 - short lift time ~ 10⁻²⁵ sec
 - charge : +2/3
 - spin : 1/2
 - Top pair production in pp collision
 - σ ~ 7.22 pb at √S = 1.96 TeV: (NNLL, C. Schwinn, arXiv:1205.0988)

•
$$q\bar{q} \rightarrow t \bar{t} : \sim 90\%$$
 , $gg \rightarrow t \bar{t} : \sim 10\%$

- SM top quark \rightarrow Wb (~ 100%) final states of top pair are given by W decay states
 - lepton + jets
 - dilepton
 - all hadronic

Decay of top quark pair

 \mathbf{W} +

Ρ

- Di-lepton channel (DIL)
- Lepton + jet channel (LJ)

Ρ

h

q

W

ICHEP2012

Di-lepton events(DIL)

- Event Selection
 - Two high p_T leptons
 - > 20 GeV
 - |η| < 2
 - High missing E_T due to the two neutrinos
 - Suppressing of Z boson events
 - High total transverse energy
 - Two or more jets

Event Selection

- high p_T lepton(e/ μ)
 - > 20 GeV (CDF)
 - $|\eta| < 1.0$
- Missing E_{T} due to the one neutrino
- Four or more jets
 - |η| < 2.0
- at least one b-tagged jet
 - $|\eta| < 1.0$
- full CDF RUN II data, with one good b-tag : **8.7 fb**⁻¹

6

q

Top quark branching ratio(t \rightarrow b)

Direct measurement in lepton+jet, 8.7 fb⁻¹

$$R = \frac{\mathscr{B}(t \to Wb)}{\mathscr{B}(t \to Wq)} = \frac{\left|V_{tb}\right|^2}{\left|V_{tb}\right|^2 + \left|V_{ts}\right|^2 + \left|V_{td}\right|^2}$$

- LJ samples are divided to 18 subsamples
- 1,2 btag X 3jet, 4jet, ≥5jets X lepton type
- R is determined from the maximum likelihood for each subsample

$$\mathcal{L} = \prod_{i} \mathscr{P}\left(\mu_{exp}^{i}(R, \sigma_{p\bar{p} \to t\bar{t}}, x_{j}) | N_{obs}^{i}\right) \prod_{j} G\left(x_{j} | 0, 1\right)$$

- $\left|V_{tb}\right|$ is derived from the result

(LJ, 8.7fb⁻¹ , CDF note 10723)

Youngdo Oh

ICHEP2012

Top width

- SM prediction : $\Gamma_t \sim 1.5 \text{ GeV}$
- Direct measurement in lepton+jet, 4.3fb⁻¹
 - template method with different top quark Γ_t and in situ JES
 - subsamples with 1,2 b-tags (diff. s+b) $\frac{1}{\sqrt{2}}$
 - comparing s + b probability density
 - unbinned maximum likelihood

0.3 GeV < Γ_t < 4.4 GeV at 68% C.L. Γ_t < 7.6 GeV at 95% C.L. (LJ, 4.3fb⁻¹, PRL 105, 232003(2010))

Youngdo Oh

Spin correlations

• Top pairs are produced with a definite spin depending on production mechanism

- Top decays before hadronization :
 - spin information passed to decay products
 - spin correlation can be studied from the angular distribution of decay products reflects
- Correlation strength (κ) is defined as

$$\frac{1}{\sigma} \frac{d^2 \sigma}{d \cos \theta_+ d \cos \theta_-} = \frac{1 + \kappa \cos \theta_+ \cos \theta_-}{4} \qquad \qquad \begin{array}{l} \theta_+(\theta_-) : \text{ angle of lepton} \\ \text{ in top rest frame} \\ \kappa = \frac{N_{\uparrow\uparrow} + N_{\downarrow\downarrow} - N_{\uparrow\downarrow} - N_{\downarrow\uparrow}}{N_{\uparrow\uparrow} + N_{\downarrow\downarrow} + N_{\uparrow\downarrow} + N_{\downarrow\uparrow}} \end{array}$$

- SM predicts $\kappa = 0.78 + 0.03 - 0.04$ (Nucl. Phys. B 690,81 (2004))

The measurement Spin correlation

- Using templates for cosθ cosθ.
- Binned maximum likelihood for C_{meas}
- Statistically limited
- Consistent with SM

$$\kappa_{\text{lepton+jet}} = 0.72 \pm 0.69$$

(LJ, 5.3fb⁻¹ , CDF note 10211)

 $\kappa_{\text{Dilepton}} = 0.04 \pm 0.56$ (DIL, 5.1fb⁻¹, CDF note 10719)

Dilepton

W helicity

- W helicity can be Measured in t \rightarrow Wb(~100%)
- Three possible helicity states
 - Longitudinal (f_0), left-handed (f_1) and right-handed (f_+)
 - angular distribution of decay products in W rest frame dependent on helicity state
- In SM, right-handed is strongly suppressed
 - V-A interaction
 - fraction of f_{0} , f_{+} and f_{-} depends on m_{t} and m_{W}

ICHEP2012

deviation would provide evidence of BSM

SM predection :

$$f_0 = 69.6 \%$$

 $f_- = 30.3 \%$
 $f_+ = 0.1 \%$

Youngdo Oh

lepton and top direction in W rest frame) $\omega(\cos\theta^*) \propto 2(1-\cos^2\theta^*)f_0 + (1-\cos\theta^*)^2 f_- + (1+\cos\theta^*)^2 f_+$

• Extract f_0 , f_+ from distribution of θ^* (angle between

• Dilepton samples in 5.1fb⁻¹

K-S Test : 0.740 140 — DATA 2 Test : 0.717 (Entries : 608) 120 Signal+Background ----- Background Dilepton 40 20 0.8

 $f_0 = 0.71 \pm 0.18(stat) \pm 0.06(syst)$ $f_{+} = -0.07 \pm 0.09(stat.) \pm 0.03(syst.)$

(DIL, 5.1fb⁻¹, CDF note 10543)

The measurement of W helicity

- Iepton+jet samples in 8.7 fb⁻¹
- matrix element method adopted

 top quark charge from standard model : +2/3 (SM) exotic quark : -4/3 (XM) (D. Chang, W. Chang Phys. Rev. D(59) 1999)

	t	\rightarrow	W	b
(SM)	+2/3		+1	-1/3
(XM)	- 4/3		-1	-1/3

- Using Lepton+jet smaples, three main components to assign the sign of top charge
 - determining W charge from the charge of lepton
 - pairing the W with b jet to ensure that they are coming from the same top decay branch
 - finally, getting the flavor of the b jet using jet charge algorithm to find the sign of top charge

- From 5.6fb⁻¹ lepton+jet samples, 416 SM like pairs and 358 XM like pairs has been observed in data.
- Q(W)*Q(b-jet) of data is consistent with the one of SM prediction.

 An exotic quark hypothesis is excluded with 99% C.L. (LJ, 5.6fb⁻¹, CDF note 10460)

400

200

⁰-3

 A_{fb}

2

(LJ, 8.7fb⁻¹, CDF note 10807)

 $\Delta \mathbf{y}_{\mathbf{t}}$

0.162 ± 0.047(stat) (lepton+jet, 8.7 fb⁻¹)

Tomorrow, please listen to the talk by Chris Hays for details.

Measurement asymmetry in Δy

-1

0

 SM prediction Leading order : No asymmetry Next-to-leading order : 0.066

CDF Run II Preliminary L = 8.7 fb⁻¹

Top forward-backward asymmetry

0.2

0

350

400

450

500

550

600

650

700

M_{tt} GeV/c²

750

Conclusion

- The full CDF dataset is being studied in top properties measurement.
- Spin correlations, A_{FB} are complementary to LHC measurements
- Data taking is done. But there is a lot left to be learned from the CDF top quark sample.
- Please look at the websites of CDF's Top group for more informations and results

http://www-cdf.fnal.gov/physics/new/top/top.html