Spin tracking at Future e⁺e⁻ Colliders

O Adeyemi, D Barber, I Bailey, M Beckman, <u>A Hartin</u>, V Kovalenko, J List, L Malysheva, G Moortgat-Pick, C Pidcott, S Reimann, F Staufenbiel, A Schaelike, A Ushakov, et al

DESY Hamburg, DESY Zeuthen, Uni Hamburg, Uni Lancaster, Daresbury

<u>Synopsis</u>

- Global "Source-to-IP" spin tracking
- Positron source, spin rotator, ring, linac/BDS, IP beam-beam
- Depolarisation due to ground motion, energy and emittance spread
- Strong field spin effects at the IP
- International Linear Collider (ILC) lattice, ILC/CLIC IP parameters

ICHEP'12 Melbourne

Source-to-IP spin tracking

- ILC is a precision machine we need polarized beams (80% e⁻/30% e⁺)
 - We need to know how the polarization changes from source to IP
 - 2X10¹⁰ particles per bunch, 2450 bunches per train, 4 trains per sec
 - Polarization P, Depolarization, ΔP and uncertainty $\delta \Delta P$
 - Ultimately we need to know $\delta\Delta P \leq 0.25\%$

• SCOOP: Biggest $\delta\Delta P$ is at the IP

ICHEP'12 Melbourne Slide 2

Integrated spin tracking simulation

Placet sim of linac

- 1 micron random displacement
- 1:1 correction
- Dispersion free steering
- Deliver multiple Bunch trains of 300 bunches

BMAD sim of BDS and Extraction

- Ground motion model B (moderate)
- Translate latest
 ILC MAD lattice
- Examine impact of orbit correction on the induced depolarisation

IP Spin tracking

- Modified CAIN with full spin components in 1st order processes
- Considered beam offsets, Energy and Polarisation spreads
- New program
 <u>Ipstrong</u> being developed for higher orders

Simulation of ground motion

- generate <u>random</u> offsets generated and transformed into frequency domain
- <u>Convolute</u> random and measured spectra and invert transform back to time domain
- Apply <u>coherency</u> function so nearby elements move in a similar fashion

linac emittance growth

Modelled in placet (no spin tracking)

• Starting point: 1 micron random beam jitter and an orbit correction (dispersion free steering + 1:1 correction)

- Emittance growth due to ground motion over several hours
- Previous studies estimate $\Delta P \sim 0.001\%$, here we consider linac a "spin drift space"
- Feed beam into positron source

Positron Source

•Source to deliver 3×10^{10} e+ from primary e- beam

- Undulator converts Primary beam to photons
- Photon collimator improves polarization and reduces energy deposition in target
- Target is a solid wheel (Titanium, Tungsten) or liquid (Lead)
- •OMD can be a quarter wave transformer RF cavities embedded in solenoid field

Positron Source Simulation

(Ushakov, Schaelike)

- Spin tracking with the Geant based PPS-Sim program - crosscheck with other codes
- PPS-Sim produces photon spectrum and polarization
- Visualization of OMD electron and positron
- Random transverse beam offsets introduced to determine ΔP
- Assuming 1 micron beam jitter $\delta\Delta P \sim 0.1\%$

Spin Rotator

Spin Rotator Simulation

(Kovalenko, Malysheva)

- Modelled in BMAD
- No misalignments
- Initial random beam y offsets
- Polarization losses linked to beam energy spread
- RDR Design energy spread is 0.2%
- So $\triangle P = 0.3\%$, $\delta \triangle P = 0.001\%$

Damping Ring Depolarisation

(Barber, Malysheva 2006)

- Potential depolarisation via nonvertical spins (precession) and diffusion (spin flip)
- SLICKTRACK (SLICK + photon emission) simulation
- 1/3 mm misalignments, 1/3 mrad quadrupole roll
- Injection emittances -> 10*nominal
- Studied at 4.8 GeV (spin-orbit resonance) and 5 GeV (ILC)
- Different spin angles from vertical studied
- "Negligible depolarisation"

Beam Delivery System

ΙÞ

2000

Slide 11

1500

1000

z (m)

BDS Depolarisation

(Hartin, Beckmann, List)

- Analysis based on initially ideal bunch of 50,000 macroparticles
- ground motion in linac and orbit correction but assume no depolarization
- Apply realistic ground motion (model C) to BDS
- Examine beam y-profile and Depolarization at IP
- Within half a day depolarisation reaches 0.001% (small!)
- Long Before ΔP reaches 0.1% the orbit will be corrected
- See talk of J.List for more details + polarimetry studies

ICHEP'12 Melbourne Slide 12

Beam-beam processes

(processes which take place in the electromagnetic fields of both charge bunches)

Strong field 'Upsilon' parameter

Currently simulated processes

- <u>Incoherent</u>: Equiv Photon Approx,
 - Breit Wheeler, Bethe Heitler, Landau Lifshitz, Bremstrahlung
- <u>Coherent</u>: Strong field (Furry picture)
 - Beamstrahlung, pair production, AMM, higher orders
- <u>Simulation tool</u>: CAIN2.42 with full spin components

IP "1st order" depolarisation

(Hartin, Bailey, Pidcott)

Spin precession

Anomalous magnetic moment in external field

Spin-flip process

Constant crossed Spin vector field – Airy functions $W(\Upsilon, \boldsymbol{\xi}) = \frac{\alpha m_e^2}{\pi \epsilon} \int_0^\infty \frac{du}{(1+u)^3} \left[\frac{e}{m^3} F^{*\mu\nu} p_\mu s_\nu \frac{z \operatorname{Ai}(z)}{1+u} \right]$ $-\text{Ai}_{1}(z) - \frac{2+2u+u^{2}}{z(1+u)}\text{Ai}'(z)$ beam field tensor

CAIN simulation

Parameter Set	Υ	ΔΡ	Lumi weighted ΔP
ILC 1TeV	0.27	2.03%	0.55%
CLIC 3TeV	3.34	4.8%	1.31%

IP bunch-bunch depolarisation

- Generate 10 CLIC 3 TeV
 e⁺e⁻bunches with design
 energy spread and initial
 0.001% depolarisation
- Assume head-on collision
- Process the 10 bunch collisions in CAIN
- •Uncertainty ~5% of ΔP

- CLIC 3TeV $\Delta P=4.3\%$ and $\delta \Delta P\sim 0.2\%$
- ILC 1TeV $\triangle P=2.0\%$ and $\delta \triangle P\sim 0.1\%$

IP "higher order" depolarisation

(Hartin – see ICHEP12, Thur 5/7, 10.15am Track 12 talk)

Requires:

Theoretical calculations in the Furry Picture, a new Beam-Beam simulator and strong field Physics Event generator

IPStrong Initialise beam Adaptive grid Distribute charges to grid Poisson solver Furry Pic monte carlo Move particles

Output events

Summary

- Integrated simulations of spin tracking reveal total Depolarisation ΔP and uncertainty $\delta \Delta P$
- Recent spin tracking studies of positron source, spin rotator, BDS and IP
- Biggest sources of Depolarisation ($\triangle P$) at Source and IP
- Train-train uncertainty to be dealt with by polarimetry
- IP depolarisation due to both energy spread and theory and operates bunch-bunch
- In any case, we are within budget ($\delta\Delta P=0.25\%$): **Total** $\delta\Delta P=0.183\%$
- Remaining theoretical uncertainty being studied and simulated (IPstrong)

Component	ΔΡ	δΔΡ	Source of uncertainty	$\delta\Delta P$ timescale
linac	0.001%	0.001 %	Ground motion	train-train
Positron source	-	0.1 %	Emittance spread	train-train
Spin rotator	0.3%	0.001 %	Energy spread	train-train
BDS	0.001%	0.001 %	Ground motion	train-train
IP (ILC 1 TeV)	0.55%	0.03+? %	Energy spread+ theoretical	bunch-bunch
IP (CLIC 3TeV)	1.31%	0.05+? %	Energy spread+ theoretical	bunch-bunch

ICHEP'12 Melbourne Slide 17