

Improved Measurement of Electron-antineutrino Disappearance at Daya Bay

Liangjian Wen

Institute of High Energy Physics, China
On behalf of the Daya Bay Collaboration
36th ICHEP, Melbourne, 5 July, 2012

The Daya Bay Collaboration

~250 Collaborators

The Daya Bay Detectors

- Multiple AD modules at each site to check Uncorr. Syst. Err.
 - Far: 4 modules, near: 2 modules
- Multiple muon detectors to reduce veto eff. uncertainties
 - Water Cherenkov: 2 layers
 - RPC: 4 layers at the top + telescopes

Data Period

- A→Two Detector Comparison:
 Sep. 23, 2011 Dec. 23, 2011
 Nucl. Inst. and Meth. A 685 (2012), pp. 78-97
- B→First Oscillation Result:
 Dec. 24, 2011 Feb. 17, 2012
 Phys. Rev. Lett. 108, 171803 (2012)
- C→Updated analysis:
 Dec. 24, 2011 May 11, 2012

To be submitted to Chinese Physics C

- Data volume: 40TB
- DAQ eff. ~ 96%
- Eff. for physics: ~ 94%

Energy calibration & reconstruction

- Low-intensity LED → PMT gains are stable to 0.3%
- ⁶⁰Co at the detector center → raw energies
 - Correct small (0.2%) time dependence
- ⁶⁰Co at different positions in detector
 - Correct spatial dependence . Common correction for all the ADs
- Calibrate energy scale using neutron capture peak

1.3 -

1.2

 $f(R,Z) = f_1(R) * f_2(Z)$

→ 0.12% efficiency difference among detectors

Anti-neutrino Events Selection

Anti-neutrino event selection

- 0.7 MeV < E_p < 12.0 MeV
- 6.0 MeV < E_d < 12.0 MeV
- $-1 \mu s < \Delta t_{p-d} < 200 \mu s$
- Muon Veto: 0.6 ms after a Pool muon (reject fast neutron), 1 ms after an AD muon (reject double neutron), 1 s after an AD shower muon (reject ⁹Li/⁸He)
- Multiplicity cut: No other >0.7 MeV trigger in (t_p-200

Efficiencies & Uncertainties

Detector					
	Efficiency	Correlated	Uncorrelated		
Target Protons		0.47%	0.03%		
Flasher cut	99.98%	0.01%	0.01%		
Delayed-energy cut	90.9%	0.6%	0.12%		
Prompt-energy cut	99.88%	0.10%	0.01%		
Multiplicity cut		0.02%	< 0.01%		
Capture-time cut	98.6%	0.12%	0.01%		
Gd capture ratio	83.8%	0.8%	< 0.1%		
Spill in	105.0%	1.5%	0.02%		
Live time	100.0%	0.002%	< 0.01%		
Combined	78.8%	1.9%	0.2%		

All detectors use one common batch of target scintillator

Quantity	Relative	Absolute
Free protons/kg	neg.	0.47%
Density	neg.	0.0002%
Total mass	0.015%	0.015%
Bellows	0.0025%	0.0025
Overflow tank	0.02%	0.02%
Total	0.03%	0.47%

Target Protons Uncertainty

Design value

Baseline: 0.38%

Goal: 0.18%

Side-by-side Comparison

- Expected ratio of neutrino events: R(AD1/AD2) = 0.982
 - The ratio is not 1 because of target mass, baseline, etc.
- Measured ratio: $0.987 \pm 0.004(stat) \pm 0.003(syst)$

This check shows that systematic errors are under control, and will determine the final systematic error

Backgrounds: Accidentals

- Two signals accidentally satisfied the anti-neutrino event selection criteria
- Calculation: use the rate of prompt- and delayed-signals

Cross-checks

- Prompt-delayed distance distribution → Check the fraction of prompt-delayed pair with distance>2m
- Off-window coincidence → measure the accidental background

Backgrounds: 9Li/8He %Li/8He Fit

Cosmic μ produced ⁹Li/⁸He in LS

 β -decay + neutron emitter

Measurement:

Time-since-last-muon fit method

B/S uncertainty:
$$\sigma_b = \frac{1}{\sqrt{N}} \cdot \sqrt{(1+\tau R_\mu)^2 - 1}$$

- Improve the precision by preparing muon samples w/ and w/o followed neutrons
- Set a lower limit. Muons with small visible energy also produce ⁹Li/⁸He

B/S @ EH1/2 ~ 0.4%, B/S @ EH3 ~ 0.3% ΔB/B ~ 50%

Backgrounds: Fast neutrons

Method I:

Relax the E_p <12MeV criterion. Extrapolation into the (0.7 MeV, 12.0 MeV) region gave an estimate for the residual fast-neutron background.

Method II:

Use water pool to determine the spectra of fast neutron, and estimate the residual fast neutron background and water pool inefficiency

$$n_f = n_f^{iws} \cdot (1 - \epsilon_{iws}) + n_f^{ows} \cdot (1 - \epsilon_{ows}) + n_f^{rock}$$

efficiency of IWS muon

efficiency of OWS ONLY muons

Results are consistent

B/S @ EH1/2 ~ 0.12%, B/S @ EH3 ~ 0.07% ΔB/B ~ 40%

Backgrounds: ²⁴¹Am-¹³C source & ¹³C(α,n)¹⁶O

- Correlated backgrounds from ²⁴¹Am-¹³C source inside ACUs:
 - Neutron inelastic scattering with
 ⁵⁶Fe + neutron capture on ⁵⁷Fe
 - Simulation shows that correlated background is 0.2 events/day/AD

B/S @ EH1/2 ~ 0.03%, B/S @ EH3 ~ 0.3%, ΔB/B ~ 100%

- ¹³C(α,n)¹⁶O correlated backgrounds
 - Identified α sources(²³⁸U, ²³²Th, ²²⁷Ac, ²¹⁰Po) and rates from cascade decays and spatial distribution
 - Calculate backgrounds from α rate +
 (α ,n) cross sections

B/S @ EH1/2 ~ 0.01%, B/S @ EH3 ~ 0.05% ΔB/B ~ 50%

Time correlations of the cascade decays

Backgrounds summary

	Near Halls		Far		
	B/S %	$\sigma_{B/S}$ %	B/S %	$\sigma_{B/S}$ %	ΔΒ/Β
Accidentals	1.5	0.02	4.0	0.05	~1%
Fast neutrons	0.12	0.05	0.07	0.03	~40%
⁹ Li/ ⁸ He	0.4	0.2	0.3	0.2	~50%
²⁴¹ Am- ¹³ C	0.03	0.03	0.3	0.3	~100%
$^{13}\mathrm{C}(\alpha,\mathrm{n})^{16}\mathrm{O}$	0.01	0.006	0.05	0.03	~50%
Sum	2.1	0.21	4.7	0.37	~10%

Total backgrounds are 5% (2%) in far (near) halls Background uncertainties are 0.4% (0.2%) in far (near) halls

Reactor Neutrinos

Reactor neutrino spectrum

$$S(E) = \sum_{i} F_{i} S_{i}(E)$$
 neutrino spectra per fission of each isotope simulated fission rate

The measured thermal power W_{th} is used for normalization when simulating fission rate

$$F_i = W_{th} f_i / \sum_k f_k e_k$$

Energy release per fission

Isotope	E_{fi} , MeV/fission
$^{235}{ m U}$	201.92 ± 0.46
$^{238}\mathrm{U}$	205.52 ± 0.96
$^{239}\mathrm{Pu}$	209.99 ± 0.60
$^{241}\mathrm{Pu}$	213.60 ± 0.65

Kopeikin et al, Physics of Atomic Nuclei, Vol. 67, No. 10, 1892 (2004)

_	100		
(%)	90	Reactor core simulation	→ ²³⁵ U
tion	E	Neactor Core Simulation	→ ²³⁹ Pu
frac	80	_	<u></u> 238U
Fission fraction (%)	70	and the same of th	→ ²⁴¹ Pu
Fis	60 E	The state of the s	Others
	50		*****
	40 E		
	30 E	A STATE OF THE STA	
	20	A STATE OF THE STA	
	10		
	0		444444
	0	5000 10000	15000 20000 Burn-up (MWD/TU)

Reactor					
Correlated Uncorrelated					
Energy/fission	0.2%	Power 0	.5%		
$\overline{\nu}_e$ /fission	3%	Fission fraction 0	.6%		
		Spent fuel 0	.3%		
Combined	3%	Combined 0	.8%		

Relative measurement → flux model has negligible impact on far v.s near oscillation measurement

Daily Anti-neutrino Rate

- Three halls taking data synchronously allows near-far cancellation of reactor related uncertainties
- Rate changes reflect the reactor on/off.

Via GPS and modern theodolites, relative detector-core positions are known to 3cm

Predictions are scaled by a common absolute normalization factor from the fitting

Discovery of a non-zero value of θ_{13}

 $R = 0.940 \pm 0.011 \text{ (stat)} \pm 0.004 \text{ (syst)}$

 $\sin^2 2\theta_{13} = 0.092 \pm 0.016 \text{(stat)} \pm 0.005 \text{(syst)}$

A clear observation of far site deficit with the first 55 days' data. 5.2 σ for non-zero value of θ_{13} Spectral distortion consistent with oscillation.

Improved results

 $R = 0.944 \pm 0.007 \text{ (stat)} \pm 0.003 \text{ (syst)}$

 $\sin^2 2\theta_{13} = 0.089 \pm 0.010 \text{(stat)} \pm 0.005 \text{(syst)}$

With 2.5x more statistics, an improved measurement to θ_{13}

Summary & Outlook

 Daya Bay has unambiguously observed reactor electronantineutrino disappearance

$$R = 0.944 \pm 0.007 \text{ (stat)} \pm 0.003 \text{ (syst)}$$

• Interpreting the disappearance as neutrino oscillation yields the most precise measurement of θ_{13} :

$$\sin^2 2\theta_{13} = 0.089 \pm 0.010 \text{ (stat)} \pm 0.005 \text{ (syst)}$$

- Install the last two antineutrino detectors this year, measure $\sin^2 2\theta_{13}$ to ~5% precision
- Persue other physics, such as precise reactor $\overline{\nu}_e$ flux and spectrum, and measurement of Δm_{31}^2 (~5% precision)

Backup Slides

Signals and Backgrounds

	AD1	AD2	AD3	AD4	AD5	AD6
Antineutrino candidates	69121	69714	66473	9788	9669	9452
DAQ live time (day)	127.	5470	127.3763		126.2646	
Efficiency $\epsilon_{\mu} * \epsilon_{m}$	0.8015	0.7986	0.8364	0.9555	0.9552	0.9547
Accidentals (/day)	9.73 ± 0.10	9.61 ± 0.10	7.55 ± 0.08	3.05 ± 0.04	3.04 ± 0.04	2.93 ± 0.03
Fast neutron (/day)	0.77 ± 0.24	0.77 ± 0.24	0.58 ± 0.33	0.05 ± 0.02	0.05 ± 0.02	0.05 ± 0.02
⁸ He/ ⁹ Li (/day)	2.9 \(\frac{1}{2} \)	±1.5	2.0 ± 1.1		0.22 ± 0.12	
Am-C corr. (/day)		0.2 ± 0.2				
$^{13}\text{C}(\alpha, \text{n})^{16}\text{O} (/\text{day})$	0.08 ± 0.04	0.07 ± 0.04	0.05 ± 0.03	0.04 ± 0.02	0.04 ± 0.02	0.04 ± 0.02
Antineutrino rate (/day)	662.47 ± 3.00	670.87 ± 3.01	613.53 ± 2.69	77.57 ± 0.85	76.62 ± 0.85	74.97 ± 0.84

Signal+Backgound Spectrum

	Near Halls		Far Hall		
	B/S %	$\sigma_{B/S} \\ \%$	B/S %	$\begin{matrix} \sigma_{B/S} \\ \% \end{matrix}$	ΔΒ/Β
Accidentals	1.5	0.02	4.0	0.05	~1%
Fast neutrons	0.12	0.05	0.07	0.03	~40%
⁹ Li/ ⁸ He	0.4	0.2	0.3	0.2	~50%
²⁴¹ Am- ¹³ C	0.03	0.03	0.3	0.3	~100%
$^{13}C(\alpha, n)^{16}O$	0.01	0.006	0.05	0.03	~50%

Discovery of a non-zero value of θ_{13}

 $R = 0.940 \pm 0.011 \text{ (stat)} \pm 0.004 \text{ (syst)}$

Far vs. near relative measurement (Absolute rate is not constrained)

Consistent results obtained by independed analysis, different reactor flux models.

$$\sin^2 2\theta_{13} = 0.092 \pm 0.016 (stat) \pm 0.005 (syst)$$

A clear observation of far site deficit with the first 55 days' data. 5.2 σ for non-zero value of θ_{13} Spectral distortion consistent with oscillation.

Backgrounds: ²⁴¹Am-¹³C source

- Neutrons emitted from 241 Am- 13 C source inside ACUs could generate γ -rays via inelastic scattering or capture in steel, as well as capture on Gd/H
- The neutron-like singles from ACUs were measured by subtracting neutron-like singles in Z<0 region from that in Z>0 region
 - Measurement is consistent with MC
- Correlated backgrounds:
 - Neutron inelastic scattering with ⁵⁶Fe + neutron capture on ⁵⁷Fe
 - Simulation shows that correlated background is 0.2 events/day/AD

B/S @ EH1/2 ~ 0.03%, B/S @ EH3 ~ 0.3% ΔB/B ~ 100%

Backgrounds: ¹³C(α,n)¹⁶O

(10 μ s, 160 μ s)

- Identified α sources:
 - ²³⁸U, ²³²Th, ²²⁷Ac, ²¹⁰Po
- Determine α rate from cascade decays and spatial distribution for singles around ²¹⁰Po peak
- Calculate backgrounds from α rate + (α,n) cross sections

B/S @ EH1/2 $^{\sim}$ 0.01%, B/S @ EH3 $^{\sim}$ 0.04% Δ B/B $^{\sim}$ 50%

Time correlations of the cascade decay

α source	Total α rate	BG rate
²¹⁰ Po	22Hz at EH1	0.06/day at EH1
	14Hz at EH2	0.04/day at EH2
	5Hz at EH3	0.02/day at EH3
²²⁷ Ac	1.4 Bq	0.01/day
238U	0.07Bq	0.001/day
²³² Th	1.2Bq	0.01/day

Flashers: Imperfect PMTs

- Spontaneous light emission by PMT
- ~ 5% of PMT, ~5% of event
- Rejection: pattern of fired PMTs
 - Topology: a hot PMT + near-by PMTs and opposite PMTs

 $d_{max} = Q_{max}/Q_{sum}$

Inefficiency to neutrinos:

 $0.024\% \pm 0.006\%$ (stat)

Contamination: < 0.01%

Backgrounds: fast neutron

Method I:

Relax the E_p <12MeV criterion. Extrapolation into the (0.7 MeV, 12.0 MeV) region gave an estimate for the residual fast-neutron background.

Method II:

Use water pool to determine the spectra of fast neutron, and estimate the residual fast neutron background and water pool inefficiency

	Method I (/day)	Method II (/day)
EH1	0.77 ± 0.24	0.71±0.35
EH2	0.58 ± 0.33	0.51±0.25
EH3	0.05 ± 0.02	0.02 ± 0.02

Baseline

- Survey:
 - Methods: GPS, Total Station, laser tracker, level instruments, ...
 - Results are compared with design values, and NPP coordinates
 - Data processed by three independent software
- Results: sum of all the difference less than 28 mm
- Uncertainty of the fission center from reactor simulation:
 - 2 cm horizontally
 - 20 cm vertically
- The combined baseline error is 35mm, corresponding to a negligible reactor flux uncertainty (<0.02%)

Target Mass & No. of Protons

- Target mass during the filling measured by the load cell, precision ~ 3kg → 0.015%
- Checked by Coriolis flow meters, precision ~
 0.1%
- Actually target mass:

$$M_{target} = M_{fill} - M_{overflow} - M_{bellow}$$

- M_{overflow} and M_{bellows} are determined by geometry
- M_{overflow} is monitored by sensors

One batch LAB

		1
Quantity	Relative /	Absolute
Free protons/Kg	neg.	0.47%
Density	neg.	0.0002%
Total mass	0.015%	0.015%
Bellows	0.0025%	0.0025
Overflow tank	0.02%	0.02%
Total	0.03%	0.47%

Trigger Performance

Threshold for a hit:

- AD & pool: ¼ PE

Trigger thresholds:

- AD: $^{\sim}$ N_{HIT}=45, E_{tot}= $^{\sim}$ 0.4 MeV

- Inner pool: N_{HIT}=6

Outer pool: N_{HIT}=7 (8 for far hall)

- RPC: 3/4 layers in each module

Trigger rate(EH1)

– AD singles rate:

• >0.4MeV, ~ 280Hz

• >0.7MeV, ~ 60Hz

Inner pool rate: ~170 Hz

Outer pool rate: ~ 230 Hz

Energy Cuts Efficiency and Systematics

- Delayed energy cut E_n > 6 MeV
 - Energy scale uncertainty 0.5% ->
 - Efficiency uncertainty ~ 0.12%
- Prompt energy cut E_p > 0.7 MeV
 - Energy scale uncertainty 2 % →
 - Efficiency uncertainty ~ 0.01%

The inefficiency mainly comes from edges

	Eff.	Corr.	Un-corr.
Delayed energy cut	90.9%	0.6%	0.12%
Prompt energy cut	99.88%	0.10%	0.01%

Spill-in effect and Systematics

- Neutrons generated in acrylic and LS can spill into Gd-LS and be captured on Gd.
- Simulation shows that Gd capture is increased by 5%.
- The relative differences in acrylic vessel thickness, acrylic density and liquid density are modeled in MC

	Eff.	Corr.	Un-corr.
Spill-in	105.0%	1.5%	0.02%

2012/7/11 32

Muon Veto and Multiplicity Cut

- Muon veto
 - Total veto time is the sum of all the veto time windows
 - Temporal overlap is taken into account
- Multiplicity cut
 - Efficiency = $\varepsilon_1 \times \varepsilon_2 \times \varepsilon_3$
- Total efficiency
 - Uncertainty coming mainly from the average neutron capture time. It is correlated

1s after an AD shower mu
1ms after an AD mu
0.6ms after an WP mu

Prompt-delayed pairs within 200 μ s No triggers before the prompt and after the delayed signal by 200 μ s

Gd Capture Fraction: H/Gd and Systematics

- Uncertainty is large if takes simply the ratio of area
- Relative Gd content variation 0.1% → evaluated from neutron capture time
- Geometry effect on spill-in/out 0.02%
 → relative differences in acrylic thickness, acrylic density and liquid density are modeled in MC

Neutron capture time from Am-C

	Eff.	Corr.	Un-corr.
Gd capture ratio	83.8%	0.8%	<0.1%

Time Correlation Cut: $1\mu s < \Delta t_{e+-n} < 200\mu s$

 Uncertainty comes from Gd concentration difference and possible trigger time walk effect (assuming 20ns)

	Eff.	Corr.	Un-corr.
Capture time cut	98.6%	0.12%	0.01%

Livetime

- Synchronization of 3 Halls
 - Divide data taking time into one-hour slices
 - Discard data in a whole slice if not all 3 halls are running
- Uncertainty
 - Comes from the case when electronics buffer is full.
 - This estimated to be less than 0.0025%, by either blocked trigger ratio or accumulating all buffer full periods

	Eff.	Corr.	Un-corr.
Livetime	100%	0.002%	< 0.01%