Chris White, University of Glasgow

New insights into soft gluons and gravitons

ICHEP 2012

Overview

- \triangleright Brief introduction to IR singularities.
- ▶ QED, QCD and gravity.
- AdS space techniques: $QED \leftrightarrow$ gravity.
- ▶ Outlook.

Infrared divergences

 \triangleright In scattering amplitudes, get singularities due to gluon emission at large distances.

 \triangleright Due to integrals over gluon positions:

$$
\int d^n x
$$

- \triangleright Uncertainty principle \Rightarrow equivalent to emission of zero energy gluons.
- \triangleright Common to abelian / non-abelian gauge theories, including gravity.

IR singularities

- \triangleright Related to large logarithms in perturbation theory ("resummation").
- ▶ Various unsolved conjectures regarding IR singularity structures.
- ▶ Scattering amplitudes factorise into a hard and soft part (Mueller, Collins, Sen, Korchemsky, Magnea, Sterman), where the latter has an exponential form. Schematically:

$$
S \sim \exp\left[\sum_W W\right].
$$

 \blacktriangleright Here W are certain special diagrams called webs, and differ between theories.

Webs in QED

 \triangleright In QED, one may show that the exponent of the soft function contains only connected subdiagrams ("QED webs"), for any number of lines:

- ▶ Originally derived using combinatoric methods (Yennie, Frautschi, Suura), and recently rederived using path integral methods (Laenen, Stavenga, White).
- \triangleright Gives IR singularities to all orders in perturbation theory!

Webs in QCD

▶ Things are more complicated in QCD, due to non-commuting colour matrices (Gatheral; Frenkel, Taylor; Gardi, Laenen, Stavenga, White; Mitov, Sterman; Sung).

- ► Each of these has a kinematic factor $\mathcal{F}(D)$ $(D = a, b)$ and a colour factor $C(D)$.
- \triangleright The contribution to the exponent of the soft function turns out to be

$$
\left(\begin{array}{c}\mathcal{F}(a)\\ \mathcal{F}(b)\end{array}\right)^T\left(\begin{array}{c}\tilde{C}(a)\\ \tilde{C}(b)\end{array}\right)=\left(\begin{array}{c}\mathcal{F}(a)\\ \mathcal{F}(b)\end{array}\right)^T\frac{1}{2}\left(\begin{array}{cc}1 & -1\\ -1 & 1\end{array}\right)\left(\begin{array}{c}C(a)\\ C(b)\end{array}\right).
$$

Multiparton webs in QCD

- \blacktriangleright The set of diagrams mixes in the exponent.
- ► Colour and kinematic information is entangled in a non-trivial way.
- ► Higher order diagrams also form closed sets, which contribute to the exponent of the soft amplitude according to

$$
\sum_{D,D'} \mathcal{F}_D R_{DD'} C_{D'},
$$

where $R_{DD'}$ is a web-mixing matrix.

 \triangleright These encode a huge amount of physics!

A four loop example

Four loop mixing matrix $(x24)$

Multiparton webs

- ▶ Web mixing matrices have been shown to have interesting properties (e.g. zero sum rows, idempotence).
- \triangleright We are beginning to translate these properties into physics (Gardi, White, Smillie).
- ► Also, the mathematics of web mixing matrices can be mapped to interesting combinatoric problems in computer science (Dukes, Gardi, McAslan, Scott, Steingrimmsson, White), to do with posets and order-preserving maps.
- ▶ Progress can be made with or without any physics knowledge!

The dipole formula

- \blacktriangleright For massless particles, it is conjectured that correlations between three or more particles vanish in the soft limit.
- \blacktriangleright This is known as the *dipole formula* (Becher, Neubert; Gardi, Magnea).
- ▶ Known corrections may exist at three loops and beyond (Dixon, Gardi, Magnea, Becher, Neubert, Vernazza).
- \triangleright Recent additional constraints were derived from the high energy ("Regge") limit (Del Duca, Duhr, Gardi, Magnea, White).
- ▶ Web-mixing matrices may also have something to say about this!

IR singularities in GR

- \triangleright IR singularities in gravity were studied by Weinberg (1965), and more recently by Naculich, Schnitzer; White; Akhoury, Saotome, Sterman.
- \blacktriangleright The exponent of the soft amplitude contains only one-loop graphs!
- \triangleright One can also continuously relate QED and gravity in the soft limit, using AdS methods.

AdS methods

► The emission of soft gauge bosons is described by Wilson line operators:

$$
\exp \left[i g_s \int_0^\infty dx_\mu A^\mu (x) \right] \leftrightarrow \exp \left[i \frac{\kappa}{2} p^\mu \int_0^\infty dx_\nu h^{\mu\nu} (x) \right]
$$

- ▶ A new way to think about Wilson lines is to look at them in a Euclidean AdS space (Chien, Schwartz, Simmons-Duffin, Stewart).
- \triangleright There they become point charges, whose potential energy corresponds to the structure of IR singularities (cusp anomalous dimension) in Minkowski space!

General formulation

 \triangleright The potential energy of a pair of spin *n* Wilson lines in AdS space is (White, Miller)

$$
\tilde{H}(\beta) = A_1 \left(\frac{\sinh(n\beta)}{\sinh \beta} \right) + A_2 \left(\frac{\cosh(n\beta)}{\sinh \beta} \right).
$$

- \triangleright QED and gravity are $n = 1$ and $n = 2$.
- \triangleright Can relate this solution to the known cusp anomalous dimensions.
- \blacktriangleright However, *n* could be continuous: QED and gravity are continuously related in the soft limit!

Summary

- ► Infrared singularities remain a fertile subject of research in a variety of field theories.
- \triangleright QCD has a rich structure of singularities, underpinned by web mixing matrices.
- \triangleright Gravitational singularities, on the other hand, are extremely simple!
- Intriguing relations exist between QED / QCD and gravity.