Chris White, University of Glasgow

New insights into soft gluons and gravitons

ICHEP 2012

Overview

- Brief introduction to IR singularities.
- QED, QCD and gravity.
- AdS space techniques: $QED \leftrightarrow gravity$.
- Outlook.

Infrared divergences

 In scattering amplitudes, get singularities due to gluon emission at large distances.

 Due to integrals over gluon positions:

$$\int d^n x$$

- ► Uncertainty principle ⇒ equivalent to emission of zero energy gluons.
- Common to abelian / non-abelian gauge theories, including gravity.

IR singularities

- Related to large logarithms in perturbation theory ("resummation").
- Various unsolved conjectures regarding IR singularity structures.
- Scattering amplitudes factorise into a hard and soft part (Mueller, Collins, Sen, Korchemsky, Magnea, Sterman), where the latter has an exponential form. Schematically:

$$\mathcal{S} \sim \exp\left[\sum_{W} W
ight].$$

 Here W are certain special diagrams called webs, and differ between theories.

Webs in QED

In QED, one may show that the exponent of the soft function contains only connected subdiagrams ("QED webs"), for any number of lines:

- Originally derived using combinatoric methods (Yennie, Frautschi, Suura), and recently rederived using path integral methods (Laenen, Stavenga, White).
- Gives IR singularities to all orders in perturbation theory!

Webs in QCD

 Things are more complicated in QCD, due to non-commuting colour matrices (Gatheral; Frenkel, Taylor; Gardi, Laenen, Stavenga, White; Mitov, Sterman; Sung).

- ► Each of these has a kinematic factor F(D) (D = a, b) and a colour factor C(D).
- The contribution to the exponent of the soft function turns out to be

$$\begin{pmatrix} \mathcal{F}(a) \\ \mathcal{F}(b) \end{pmatrix}^{T} \begin{pmatrix} \tilde{C}(a) \\ \tilde{C}(b) \end{pmatrix} = \begin{pmatrix} \mathcal{F}(a) \\ \mathcal{F}(b) \end{pmatrix}^{T} \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} C(a) \\ C(b) \end{pmatrix}_{6/15}$$

Multiparton webs in QCD

- The set of diagrams mixes in the exponent.
- Colour and kinematic information is entangled in a non-trivial way.
- Higher order diagrams also form closed sets, which contribute to the exponent of the soft amplitude according to

$$\sum_{D,D'} \mathcal{F}_D R_{DD'} C_{D'},$$

where $R_{DD'}$ is a web-mixing matrix.

These encode a huge amount of physics!

A four loop example

Four loop mixing matrix (\times 24)

(6	-6	2	2	-2	4	-4	2	-2	-2	-4	4	-4	4	0	0)	١
	-6	6	-2	-2	2	-4	4	-2	2	2	4	-4	4	-4	0	0	
	2	-2	6	-2	2	4	-4	-2	2	-6	4	4	-4	-4	0	0	
	2	-2	-2	6	2	4	-4	-2	-6	2	-4	-4	4	4	0	0	
	-2	2	2	2	6	4	-4	-6	-2	-2	4	-4	4	-4	0	0	
	2	-2	2	2	2	4	-4	-2	-2	-2	0	0	0	0	0	0	
	-2	2	-2	-2	-2	-4	4	2	2	2	0	0	0	0	0	0	
	2	-2	-2	-2	-6	-4	4	6	2	2	-4	4	-4	4	0	0	
	$^{-2}$	2	2	-6	-2	-4	4	2	6	-2	4	4	-4	-4	0	0	
	-2	2	-6	2	-2	-4	4	2	-2	6	-4	-4	4	4	0	0	
	$^{-2}$	2	2	-2	2	0	0	-2	2	-2	4	0	0	-4	0	0	
	2	-2	2	-2	-2	0	0	2	2	-2	0	4	-4	0	0	0	
	-2	2	-2	2	2	0	0	-2	-2	2	0	-4	4	0	0	0	
	2	-2	-2	2	-2	0	0	2	-2	2	-4	0	0	4	0	0	
	-18	-6	-6	-6	-18	12	12	-6	-18	-18	12	12	12	12	24	0	
(-6	-18	-18	-18	-6	12	12	-18	-6	-6	12	12	12	12	0	24)	!

Multiparton webs

- Web mixing matrices have been shown to have interesting properties (e.g. zero sum rows, idempotence).
- We are beginning to translate these properties into physics (Gardi, White, Smillie).
- Also, the mathematics of web mixing matrices can be mapped to interesting combinatoric problems in computer science (Dukes, Gardi, McAslan, Scott, Steingrimmsson, White), to do with posets and order-preserving maps.
- Progress can be made with or without any physics knowledge!

The dipole formula

- ► For massless particles, it is conjectured that correlations between three or more particles vanish in the soft limit.
- This is known as the *dipole formula* (Becher, Neubert; Gardi, Magnea).
- Known corrections may exist at three loops and beyond (Dixon, Gardi, Magnea, Becher, Neubert, Vernazza).
- Recent additional constraints were derived from the high energy ("Regge") limit (Del Duca, Duhr, Gardi, Magnea, White).
- Web-mixing matrices may also have something to say about this!

IR singularities in GR

- IR singularities in gravity were studied by Weinberg (1965), and more recently by Naculich, Schnitzer; White; Akhoury, Saotome, Sterman.
- The exponent of the soft amplitude contains only one-loop graphs!
- One can also continuously relate QED and gravity in the soft limit, using AdS methods.

AdS methods

The emission of soft gauge bosons is described by Wilson line operators:

$$\exp\left[ig_s\int_0^\infty dx_\mu A^\mu(x)\right]\leftrightarrow \exp\left[i\frac{\kappa}{2}p^\mu\int_0^\infty dx_\nu h^{\mu\nu}(x)\right]$$

- A new way to think about Wilson lines is to look at them in a Euclidean AdS space (Chien, Schwartz, Simmons-Duffin, Stewart).
- There they become point charges, whose potential energy corresponds to the structure of IR singularities (cusp anomalous dimension) in Minkowski space!

General formulation

The potential energy of a pair of spin n Wilson lines in AdS space is (White, Miller)

$$\tilde{H}(\beta) = A_1\left(\frac{\sinh(n\beta)}{\sinh\beta}\right) + A_2\left(\frac{\cosh(n\beta)}{\sinh\beta}\right)$$

- QED and gravity are n = 1 and n = 2.
- Can relate this solution to the known cusp anomalous dimensions.
- However, n could be continuous: QED and gravity are continuously related in the soft limit!

Summary

- Infrared singularities remain a fertile subject of research in a variety of field theories.
- QCD has a rich structure of singularities, underpinned by web mixing matrices.
- Gravitational singularities, on the other hand, are extremely simple!
- Intriguing relations exist between QED/ QCD and gravity.