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Overview

◮ Brief introduction to IR singularities.

◮ QED, QCD and gravity.

◮ AdS space techniques: QED ↔ gravity.

◮ Outlook.
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Infrared divergences

◮ In scattering amplitudes, get singularities due to gluon
emission at large distances.

◮ Due to integrals over
gluon positions:

∫

dnx

◮ Uncertainty principle ⇒

equivalent to emission of
zero energy gluons.

◮ Common to abelian / non-abelian gauge theories, including
gravity.
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IR singularities

◮ Related to large logarithms in perturbation theory
(“resummation”).

◮ Various unsolved conjectures regarding IR singularity
structures.

◮ Scattering amplitudes factorise into a hard and soft part
(Mueller, Collins, Sen, Korchemsky, Magnea, Sterman), where
the latter has an exponential form. Schematically:

S ∼ exp

[

∑

W

W

]

.

◮ Here W are certain special diagrams called webs, and differ
between theories.
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Webs in QED

◮ In QED, one may show that the exponent of the soft function
contains only connected subdiagrams (“QED webs”), for any
number of lines:

◮ Originally derived using combinatoric methods (Yennie,
Frautschi, Suura), and recently rederived using path integral
methods (Laenen, Stavenga, White).

◮ Gives IR singularities to all orders in perturbation theory!
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Webs in QCD
◮ Things are more complicated in QCD, due to non-commuting

colour matrices (Gatheral; Frenkel, Taylor; Gardi, Laenen,
Stavenga, White; Mitov, Sterman; Sung).

(a) (b)

i

j j

i

◮ Each of these has a kinematic factor F(D) (D = a, b) and a
colour factor C (D).

◮ The contribution to the exponent of the soft function turns
out to be
(

F(a)
F(b)

)T (

C̃ (a)

C̃ (b)

)

=

(

F(a)
F(b)

)T
1

2

(

1 −1
−1 1

)(

C (a)
C (b)

)

.
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Multiparton webs in QCD

◮ The set of diagrams mixes in the exponent.

◮ Colour and kinematic information is entangled in a non-trivial
way.

◮ Higher order diagrams also form closed sets, which contribute
to the exponent of the soft amplitude according to

∑

D,D′

FDRDD′CD′ ,

where RDD′ is a web-mixing matrix.

◮ These encode a huge amount of physics!
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A four loop example

[[1,2],[3,1],[3,4],[2,4]] [[1,2],[2,3],[4,3],[4,1]] [[1,2],[3,2],[3,4],[4,1]] [[1,2],[2,3],[3,4],[1,4]]

[[1,2],[3,2],[4,3],[1,4]] [[1,2],[1,3],[4,3],[4,2]] [[1,2],[3,2],[3,4],[1,4]] [[1,2],[1,3],[3,4],[4,2]]

[[1,2],[3,1],[4,3],[4,2]] [[1,2],[1,3],[4,3],[2,4]] [[1,2],[1,3],[3,4],[2,4]] [[1,2],[2,3],[4,3],[1,4]]

[[1,2],[3,1],[3,4],[4,2]] [[1,2],[3,2],[4,3],[4,1]] [[1,2],[3,1],[4,3],[2,4]] [[1,2],[2,3],[3,4],[4,1]]
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Four loop mixing matrix (×24)






































































































6 −6 2 2 −2 4 −4 2 −2 −2 −4 4 −4 4 0 0

−6 6 −2 −2 2 −4 4 −2 2 2 4 −4 4 −4 0 0

2 −2 6 −2 2 4 −4 −2 2 −6 4 4 −4 −4 0 0

2 −2 −2 6 2 4 −4 −2 −6 2 −4 −4 4 4 0 0

−2 2 2 2 6 4 −4 −6 −2 −2 4 −4 4 −4 0 0

2 −2 2 2 2 4 −4 −2 −2 −2 0 0 0 0 0 0

−2 2 −2 −2 −2 −4 4 2 2 2 0 0 0 0 0 0

2 −2 −2 −2 −6 −4 4 6 2 2 −4 4 −4 4 0 0

−2 2 2 −6 −2 −4 4 2 6 −2 4 4 −4 −4 0 0

−2 2 −6 2 −2 −4 4 2 −2 6 −4 −4 4 4 0 0

−2 2 2 −2 2 0 0 −2 2 −2 4 0 0 −4 0 0

2 −2 2 −2 −2 0 0 2 2 −2 0 4 −4 0 0 0

−2 2 −2 2 2 0 0 −2 −2 2 0 −4 4 0 0 0

2 −2 −2 2 −2 0 0 2 −2 2 −4 0 0 4 0 0

−18 −6 −6 −6 −18 12 12 −6 −18 −18 12 12 12 12 24 0

−6 −18 −18 −18 −6 12 12 −18 −6 −6 12 12 12 12 0 24
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Multiparton webs

◮ Web mixing matrices have been shown to have interesting
properties (e.g. zero sum rows, idempotence).

◮ We are beginning to translate these properties into physics
(Gardi, White, Smillie).

◮ Also, the mathematics of web mixing matrices can be mapped
to interesting combinatoric problems in computer science
(Dukes, Gardi, McAslan, Scott, Steingrimmsson, White), to
do with posets and order-preserving maps.

◮ Progress can be made with or without any physics knowledge!
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The dipole formula

◮ For massless particles, it is conjectured that correlations
between three or more particles vanish in the soft limit.

◮ This is known as the dipole formula (Becher, Neubert; Gardi,
Magnea).

◮ Known corrections may exist at three loops and beyond
(Dixon, Gardi, Magnea, Becher, Neubert, Vernazza).

◮ Recent additional constraints were derived from the high
energy (“Regge”) limit (Del Duca, Duhr, Gardi, Magnea,
White).

◮ Web-mixing matrices may also have something to say about
this!
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IR singularities in GR

◮ IR singularities in gravity were studied by Weinberg (1965),
and more recently by Naculich, Schnitzer; White; Akhoury,
Saotome, Sterman.

◮ The exponent of the soft amplitude contains only one-loop
graphs!

◮ One can also continuously relate QED and gravity in the soft
limit, using AdS methods.
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AdS methods

◮ The emission of soft gauge bosons is described by Wilson line

operators:

exp

[

igs

∫

∞

0
dxµA

µ(x)

]

↔ exp

[

i
κ

2
pµ

∫

∞

0
dxνh

µν(x)

]

◮ A new way to think about Wilson lines is to look at them in a
Euclidean AdS space (Chien, Schwartz, Simmons-Duffin,
Stewart).

◮ There they become point charges, whose potential energy
corresponds to the structure of IR singularities (cusp
anomalous dimension) in Minkowski space!
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General formulation

◮ The potential energy of a pair of spin n Wilson lines in AdS
space is (White, Miller)

H̃(β) = A1

(

sinh(nβ)

sinhβ

)

+ A2

(

cosh(nβ)

sinhβ

)

.

◮ QED and gravity are n = 1 and n = 2.

◮ Can relate this solution to the known cusp anomalous
dimensions.

◮ However, n could be continuous: QED and gravity are
continuously related in the soft limit!
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Summary

◮ Infrared singularities remain a fertile subject of research in a
variety of field theories.

◮ QCD has a rich structure of singularities, underpinned by web
mixing matrices.

◮ Gravitational singularities, on the other hand, are extremely
simple!

◮ Intriguing relations exist between QED/ QCD and gravity.
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