

Tracking, Vertexing & b-Tagging Performance in ATLAS

Mark Tibbetts LBNL on behalf of the ATLAS Collaboration

- Physics Motivation
- ATLAS Inner Detector
- Track & vertex reconstruction (2011/12)
- b-Tagging Calibration (2011)
- Summary

x [mm] The Eye of ATLAS: Hadronic interaction vertices

Physics Motivation

- pp interactions at ATLAS result in hundreds of primary & secondary charged stable particles ($\tau > 3x10^{-11}s$)
- Precise measurement of their kinematics is essential to all physics analyses
 - Important for lepton ID, isolation and missing E_{τ}
- Requires high precision and well understood tracking detectors
- Vertex reconstruction important to identify primary interactions
 - Also displaced particle decays and material interactions
- b-Tagging algorithms identify jets and reduce backgrounds for physics signatures with heavy flavour:
 - From decays: $t \rightarrow Wb$; $H \rightarrow b\overline{b}$; $b' \rightarrow Zb$; $\overline{b} \rightarrow b\widetilde{\chi}$
 - Production cross-sections: Wb(b); Zb(b)

ATLAS Inner Detector

3 detector sub-layers:

- Pixel and SCT (microstrips) both silicon based detectors
- TRT drift tube based detector
- All layers comprise barrel and 2 endcaps

|η|<2.5

• 2T axial solenoid field for momentum measurement

Subdetector	Element size	Resolution	Hits/track	radii of the barrel layers
		$[\mu m]$	in the barrel	[mm]
Pixel	$50\mu\mathrm{m} \times 400\mu\mathrm{m}$	10×115	3	50.5, 88.5 & 122.5
SCT	$80\mu{ m m}$	17	8	299, 371, 443 & 514
TRT	4 mm	130	~30	from 554 to 1082

Track & Vertex Reconstruction

Track Reconstruction

- Algorithms based on pattern recognition
 - Inside out
 - Silicon seeds extended out to TRT
 - Reconstructs most primary tracks
 - Back-tracking:
 - TRT seeded with inward extension
 - Recovers secondary tracks (conversions, hadronic interactions, V0 decays)

Primary Vertex (PV) Reconstruction

- Iteratively fit tracks consistent with interaction region
- Choose physics PV based on Σ(pT²)
 - Becomes reference PV for b-tagging
 - Physics object association is also used

PV resolution in data from 'split vertex' method: well modelled in 2011 & 2012

Impact of Pileup

- Current challenge at LHC is impact of high pileup
- Significant effort to understand and mitigate this impact wrt tracking and PV reconstruction
- In 2012 define more robust track selection for PV reconstruction
 - Moderate drop in primary efficiency (~2-5%) for significant reduction in fake track fraction $(30\% + \rightarrow <10\%)$

Mark Tibbetts (LBNL)

- Negligible fake PV probability

Mean Number of Interactions per Crossing

Neural Network (NN) Clustering

- High density of charged particles presents clustering challenge
 - Different charged particles can contribute to single cluster for pixels
- Pattern recognition from NN can identify and separate each sub-cluster
 - Input is information from 7x7 pixel array & tracking information where available
- NN clustering is now the default in ATLAS reconstruction
- Also improves pixel hit resolution resulting in excellent impact parameter measurement

NN recovers previously shared clusters

Detector Alignment

- Tracking residuals used for alignment
 - Different levels: Whole ID, barrel vs. endcaps, layer by layer, individual modules
- However misalignment 'weak modes' exist which cannot be constrained by track residuals
 - Measure through biases in well known invariant masses (Ks & J/ψ)
- Improved alignment description in reconstruction significantly impacts Z mass resolution in data

B-Tagging Algorithms

- Algorithms to identify heavy flavour content in reconstructed jets
- Impact parameter of tracks in jet
 - **IP3D** uses track weights based on longitudinal and transverse IP significance
- Displaced secondary vertex
 - SV1 reconstructs inclusive displaced vertex
 - **JetFitter** reconstructs multiple vertices along implied b-hadron line of flight
 - Cascade decay topologies
- Advanced NN based algorithms
 - JetFitterCombNN: IP3D+JetFitter
 - MV1: IP3D+JetFitterCombNN+SV1

MV1 @ 70% b-jet efficiency Mark Tibbetts (LBNL) ICHEP 2012, Melbourne

b-Jet Efficiency from Muon Jets

- b-jet tag efficiencies measured in data from jets containing muons
- Two complementary methods:
 - pTrel: Likelihood fits of muon pT relative to jet axis pre & post tag
 - System8: Define 3 independent selection criteria (muon tag, lifetime tag under study & opposite side jet tag); event counts extract b efficiency
- Results combined for increased precision, excellent agreement!
- Systematics <20%
 - Dominant contribution at low pT from muon jets → inclusive b-jets extrapolation

b-Jet Efficiency from Top

- $t \rightarrow Wb$: b-jet control sample; high purity for single- & di-lepton channel candidate events
- 3 complementary methods
 - Tag counting: multiplicity of tagged jets gives efficiency as expect 2 b-jets (modulo acceptance, $g \rightarrow bb$, etc.)
 - Kinematic selection: measure tag rate for lead jets in ttbar candidate events
 - **Kinematic fit:** fits of ttbar event topology derive pure b-jet weight distributions
- Methods agree very well & compatible within uncertainty to muon based results
- Dominant systematics from jet uncertaintie & flavour composition modelling (ISR/FSR)

Scale Factor

c-Jet Efficiency from D*+ Decays

Entries / 0.25 MeV

600

400

200

- Tag c-jets with exclusive $D^{*^+} \rightarrow D^0(K\pi)\pi$ reconstruction
- Background subtracted fit of pseudo . proper D^0 time to extract $B \rightarrow D^*X$ contribution
- Systematics < 25%

11

ATLAS Preliminary

Data 2011.

D* inside iets

∖s = 7 TeV

Mistag Rates from Multi-Jets

- Rate of non-heavy flavour jets passing tag criteria measured in dijet data
- Two complimentary methods
 - Negative tag: mistag from resolution effects; correct for long lived hadrons & material interactions
 - SV0 mass: Likelihood fit of SV invariant mass
- Methods agree well; systematics up to 100% depending on method & jet kinematics

Summary

- ATLAS is maintaining excellent performance with tracking, vertexing & b-tagging in the large datasets already collected in 2011 & 2012
- Impact of tracking and PV reconstruction with high pileup well understood
- Advanced clustering to disentangle high density tracking in high pT jets
- Measurements of tracking detector alignment weak modes used to improve resolution in data
- Multivariate b-tagging algorithms significantly improve mistag rates
- Performance of b-tagging algorithms calibrated with full 2011 dataset
 - First calibrations from top events in 2011 for ICHEP2012
 - ATLAS-CONF-2012-097
 - Initial calibrations for 2012 data under way

BACK UP

Inner Detector Material

Physics Vertex Selection

Track Reconstruction Algorithms

Impact of High Pileup

- Higher pileup means higher charged
 particle multiplicity
- More inner detector hits
- Higher probability of fake tracks and hence fake PVs
- Decrease in PV reconstruction
 efficiency
- Robust tracks: >=9 Si hits, 0 pixel holes

Robust track reconstruction cuts shown to significantly reduce impact of pileup for moderate efficiency loss

Track Multiplicity in High pT Jets

Detector Alignment

- Tracking residuals used for alignment
- However 'weak modes' can exist which don't impact helical shape
 - e.g., B-field

Charge asymmetric momentum bias measurement from $Z \rightarrow mumu$ improves with new alignment

$$q/p \longrightarrow q/p(1 + qp_T \delta_{\text{sagitta}})$$

Correction derived from electron E/p

- Weak modes bias track parameters (pT, etc.)
- Determine their presence and correct with e.g., Ks reconstruction

2010 Data

2011 Data

-2

 ζ_s^0 mass - World Average [MeV]

2

Alignment Evolution

Level 1 alignment

Impact Parameter Resolution

- Impact parameter (d₀,z₀) significance measures whether track comes from given PV
- Critical component of many b-tagging algorithms
- Track IP resolution in data dependent on PV resolution, needs to be unfolded

$$\sigma^2(d_0) = \sigma^2(d_0^{\text{track}}) + \sigma^2(PV)$$

- Good agreement between data and MC for range of track pT
- Resolution worse in forward region due to multiple scattering

References

• Papers:

 "A measurement of the material in the ATLAS inner detector using secondary hadronic interactions" arXiv:1110.6191

• CONF Notes:

- "Measuring the b-tag efficiency using top-pair events with 4.7 fb\$^-1\$ at the ATLAS detector" ATLAS-CONF-2012-097
- "Measurement of the b-tag Efficiency in a Sample of Jets Containing Muons with 5 fb^{-1} of Data from the ATLAS Detector" ATLAS-CONF-2012-043
- "Performance of the ATLAS Inner Detector Track and Vertex Reconstruction in the High Pile-Up LHC Environment" ATLAS-CONF-2012-042
- "Measurement of the Mistag Rate of \$b\$-tagging algorithms with 5~fb\$^{-1}\$ of Data Collected by the ATLAS Detector" ATLAS-CONF-2012-040
- "b-jet tagging calibration on c-jets containing D* mesons" ATLAS-CONF-2012-039
- "Alignment of the ATLAS Inner Detector Tracking System with 2010 LHC proton-proton collisions at sqrt{s} = 7 TeV" ATLAS-CONF-2011-012