Detecting Dark Matter at the LHC with Electroweak Bremsstrahlung

Ahmad Galea, with: N. Bell, J. Dent, T. Jacques, L. Krauss and T. Weiler.

Dark Matter at the LHC

- If WIMP couples to quarks, possibility of production at LHC.
Dark Matter at the LHC

- If WIMP couples to quarks, possibility of production at LHC.
 - Escape detector unseen, carries away momentum.
 - Need visible final state to reconstruct missing transverse energy.
Dark Matter at the LHC

- If WIMP couples to quarks, possibility of production at LHC.

- Escape detector unseen, carries away momentum.

- Need visible final state to reconstruct missing transverse energy.

- Most generic process is the bremsstrahlung of a gauge boson off initial state or propagator.
Dark Matter at the LHC

- If WIMP couples to quarks, possibility of production at LHC.
- Escape detector unseen, carries away momentum.
- Need visible final state to reconstruct missing transverse energy.
- Most generic process is the bremsstrahlung of a gauge boson off initial state or propagator.

Dark Matter visible as high pT object + missing ET
Bremsstrahlung

- Gluon radiation – high cross section large backgrounds (1109.4398).
Bremsstrahlung

- Gluon radiation – high cross section large backgrounds (1109.4398).
- Photon – less constraining than jet searches (1204.0821).
- Interesting channels, but have high backgrounds.
Bremsstrahlung

- Gluon radiation – high cross section large backgrounds (1109.4398).
- Photon – less constraining than jet searches (1204.0821).
- Interesting channels, but have high backgrounds.

Electroweak Processes

- Z – easily reconstructible invariant mass.
- Decays leptonically with a small branching fraction, has few backgrounds.
Bremsstrahlung

- Gluon radiation – high cross section large backgrounds (1109.4398).
- Photon – less constraining than jet searches (1204.0821).
- Interesting channels, but have high backgrounds.

Electroweak Processes

- Z – easily reconstructible invariant mass.
- Decays leptonically with a small branching fraction, has few backgrounds.

Signal: Z + missing ET
Backgrounds

Signal: muons + missing ET
Backgrounds

Signal: muons + missing ET

Leptonic Backgrounds

\[
\begin{align*}
ZZ & \rightarrow \bar{\nu}\nu \quad \mu^+\mu^- \\
W^+Z & \rightarrow \nu l^+ \quad \mu^+\mu^- \\
W^-Z & \rightarrow \bar{\nu}l^- \quad \mu^+\mu^- \\
W^+W^- & \rightarrow \nu\mu^+ \quad \bar{\nu}\mu^-
\end{align*}
\]
Backgrounds

Signal: muons + missing ET

Leptonic Backgrounds

- $ZZ \rightarrow \nu \nu \mu^+ \mu^-$
- $W^+ Z \rightarrow \nu l^+ \mu^+ \mu^-$
- $W^- Z \rightarrow \bar{\nu} l^- \mu^+ \mu^-$
- $W^+ W^- \rightarrow \nu \mu^+ \bar{\nu} \mu^-$

- ZZ/WW will have largest mET.
- WW largest x-section, no Z.
Backgrounds

Signal: muons + missing ET

Leptonic Backgrounds

\[ZZ \rightarrow \bar{\nu}\nu \mu^+\mu^- \]
\[W^+Z \rightarrow \nu l^+ \mu^+\mu^- \]
\[W^-Z \rightarrow \bar{\nu}l^- \mu^+\mu^- \]
\[W^+W^- \rightarrow \nu\mu^+ \bar{\nu}\mu^- \]

- ZZ/WW will have largest mET.
- WW largest x-section, no Z.

QCD Backgrounds

\[t\bar{t} \rightarrow b\bar{b} W^+W^- \]
\[Z + jets \]

- Large x-section, looks a lot like WW (can be removed with cuts).
- Miss-measurement, remove with mET cut.
Illustrative Toy Model

- To simulate signature, use model similar to that presented in arXiv:0901.1334 as an example.
Illustrative Toy Model

- To simulate signature, use model similar to that presented in arXiv:0901.1334 as an example.
- Introduce Majorana DM particle χ, coloured scalar doublet η.

$$\mathcal{L}_{\text{int}} = f_{ud}(\eta_u \bar{u}_L + \eta_d \bar{d}_L)\chi_R + h.c.$$
Illustrative Toy Model

- To simulate signature, use model similar to that presented in arXiv:0901.1334 as an example.
- Introduce Majorana DM particle χ, coloured scalar doublet η.

$$\mathcal{L}_{\text{int}} = f_{ud} (\eta_u \bar{u}_L + \eta_d \bar{d}_L) \chi_R + h.c.$$

- Has free parameters f_{ud}, m_χ, and μ, where $\mu = \frac{m_\eta^2}{m_\chi^2}$.
Illustrative Toy Model

- To simulate signature, use model similar to that presented in arXiv:0901.1334 as an example.
- Introduce Majorana DM particle χ, coloured scalar doublet η.

$$\mathcal{L}_{\text{int}} = f_{ud}(\eta_u \overline{u}_L + \eta_d \overline{d}_L) \chi_R + h.c.$$

- Has free parameters f_{ud}, m_χ, μ, where \[\mu = \frac{m_\eta^2}{m_\chi^2}. \]
- Allows for processes:
Event Selection

Kinematic cuts

- Invariant mass cut.

\[61.2 \text{GeV} < m_{\mu\mu} < 121.2 \text{GeV} \]
Event Selection

Kinematic cuts

- Invariant mass cut.
- Inclusive Muon pT > 50GeV.

\[61.2 \text{GeV} < m_{\mu\mu} < 121.2 \text{GeV} \]
Event Selection

Kinematic cuts

- Invariant mass cut.
- Inclusive Muon pT > 50GeV.

$61.2 \text{GeV} < m_{\mu\mu} < 121.2 \text{GeV}$

Preliminary Figure
Event Selection

Kinematic cuts

- Invariant mass cut: $61.2\,\text{GeV} < m_{\mu\mu} < 121.2\,\text{GeV}$
- Inclusive Muon $p_T > 50\,\text{GeV}$.
- Missing ET $> 100\,\text{GeV}$.
Event Selection

Geometric cuts

- Z boosted, muons co-linear,
Event Selection

Geometric cuts

- Z boosted, muons co-linear, low ΔR.

$$\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$$
Event Selection

Geometric cuts

- Z boosted, muons co-linear, low ΔR.

\[
\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}
\]

- Biases against non-Z backgrounds.
Event Selection

Geometric cuts

- Z boosted, muons co-linear, low ΔR.

$$\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$$

- Biases against non-Z backgrounds.

Event Selection

Geometric cuts

- Z boosted, muons co-linear, low ΔR.

$$\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$$

- Biases against non-Z backgrounds.

$\Delta R < 1$
Event Selection

Geometric cuts

- Z boosted, muons co-linear, low ΔR.

$$\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$$

- Biases against non-Z backgrounds.

Event Selection

Geometric cuts

- Z boosted, muons co-linear, low ΔR.

$$\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$$

- Biases against non-Z backgrounds.

Effectively removes WW background!
Results: Early Data

Upgraded energy
8TeV, 15fb$^{-1}$
tegrated luminosity.
Results

- Design energy of 14TeV for 100fb$^{-1}$ of data.

\[m_{\chi} = 300\text{GeV} \]
\[\sqrt{s} = 2 \]
- Clearly visible above backgrounds
Results

$m_\chi = 300\text{GeV}$

$\sqrt{\mu} = 2$

$m_\chi = 300\text{GeV}$

$\sqrt{\mu} = 5$
Results

$m_\chi = 300\text{GeV}$

$\sqrt{s} = 2$

$m_\chi = 500\text{GeV}$

$\sqrt{s} = 2$
Results

$m_\chi = 300 \text{GeV}$
$
\sqrt{\mu} = 2
$

$m_\chi = 1000 \text{GeV}$
$
\sqrt{\mu} = 2
$
Conclusions

- Electroweak bremsstrahlung is an important channel in the search for dark matter at the LHC.
Conclusions

- Electroweak bremsstrahlung is an important channel in the search for dark matter at the LHC.

- $Z \rightarrow \mu \mu$ channel has few backgrounds and is easily distinguishable.
Conclusions

- Electroweak bremsstrahlung is an important channel in the search for dark matter at the LHC.

- $Z \rightarrow \mu \mu$ channel has few backgrounds and is easily distinguishable.

- Competitive with jet and photon searches.
Conclusions

- Electroweak bremsstrahlung is an important channel in the search for dark matter at the LHC.
- $Z \rightarrow \mu \mu$ channel has few backgrounds and is easily distinguishable.
- Competitive with jet and photon searches.
- Models should be constrained by early data.
Conclusions

- Electroweak bremsstrahlung is an important channel in the search for dark matter at the LHC.

- $Z \rightarrow \mu \mu$ channel has few backgrounds and is easily distinguishable.

- Competitive with jet and photon searches.

- Models should be constrained by early data.

- Clearly visible at 100fb^{-1} of data, heavy constraints should be placeable.
Acknowledgements

- Sincerest thanks to Elisabetta Barberio, Martin White, Antonio Limosani and Tony Shao for helpful discussions on experimental matters.

- Thanks also to Nicholas Setzer and Martin White for help with the relevant software.

- Gratitude to CoEPP for providing avenues for collaboration.
At current LHC running energy of 7TeV and 1fb\(^{-1}\), signal comparable to jet searches.