Precision Polarimetry for Future e^+e^- Linear Colliders

Jenny List (DESY)

on behalf of the Linear Collider Physics & Detector Study

ICHEP 2012, Melbourne
Two Linear Collider Concepts

CLIC
- $\sqrt{s} = 0.5, 1.4, 3$ TeV
- technology under development
- $P(e^-) = 80\%$, $P(e^+) = 0$ ($x\%$)
- beam energy spread: 0.3%
- energy loss (Beamstrahlung): 28%

ILC
- $\sqrt{s} = 90, 200...500$ GeV ($...1$ TeV)
- technology proven (FLASH, ...)
- $P(e^-) \geq 80\%$, $P(e^+) \approx 30\%(60\%)$
- beam energy spread: 0.1%
- energy loss (BS): 4.5%
Introduction

Compton Polarimeters

Spin Tracking

At the IP

Conclusions

Polarimetry Concept

Wanted:
- long-term luminosity weighted polarisation average

\[
\langle P \rangle = \frac{\int P \cdot \mathcal{L} dt}{\int \mathcal{L} dt}
\]

(1)

- for each data set, to per mille level precision!

Tool Kit:
- Compton polarimeters upstream (& downstream) of e^+e^- IP
- Spin tracking between polarimeters and IP
- Cross-check with e^+e^- collision data
Working Principle

Laser Compton scattering:

- $\mathcal{O}(10^3)$ events / bunch
- $\frac{d\sigma}{dE}$ depends on P_z
- $\frac{d^2\sigma}{dE d\phi}$ depends on $P_{x,y}$
- asymmetry w.r.t. to laser helicity $\sim P_z (P_{x,y})$

Magnetic Chicane:

- deflects scattered e^\pm away from beam
- transforms $E \rightarrow x \Rightarrow$ measure dN/dx
- 4 magnet design:
 - restores unscattered beam
 - renders position on detector independent of E_{beam}
Polarimeter Uncertainties & Detector Requirements

Polarimeter Uncertainties

- laser polarisation: \(\leq 0.1\% \)
- alignment w.r.t. beam: 0.1...0.2%
 - lateral position ("Compton edge"): need \(\mathcal{O}(0.1 \text{ mm}) \) for \(\leq 0.1\% \)
 - tilts: typ. 0.05%/ mrad
- detector linearity: aim for 0.1...0.2%

⇒ detector design with excellent possibilities to monitor alignment and linearity mandatory!

Detector Requirements

- alignment & linearity
- excellent monitoring, if possible online
- homogeneous response
- robustness against backgrounds (beam gas, beam halo, \(e^+ e^- \) pairs, muons, synchrotron rad.) esp. at downstream location
- dynamic range: factor \(\mathcal{O}(10^2) \) near Compton edge
Gas Cherenkov Detector \cite{JINST 7, P01019 (2012)}

- used in so far most precise Compton polarimeter (0.5..1% at SLD)
- robust against background via high Cherenkov threshold (10 MeV for e^{-} in C$_4$F$_{10}$)
- in-situ monitoring improvements:
 - non-linearity to few per mille level \rightarrow use LED between trains
 - angular alignment based on multi-anode photon detectors
- testbeam operation of 2-channel prototype \rightarrow achieved tilt alignment of 0.1°
Alternative Detectors

Quartz Cherenkov Detector

[A. Vauth]

- high photon yield: $\sim 10^3$ photo e^- per Compton e^-
- can resolve Compton e^- peaks in photoelectron (QDC) spectrum
- \rightarrow “self-calibrating”
- optimised geometry based on Geant4 simulation

Silicon Pixel Detector

[G. Alexander, I. Ben Mordechai]

- option for transverse polarimetry
- standard LHC style pixel detector ok in terms of rad. hardness and occupancy (ILC upstream)
- simulation result based on ILC upstream chicane: can get $dP_y/P_y = 0.2\%$
Compton Polarimeters

Spin Tracking

At the IP

Conclusions

Introduction

Compton Polarimeters

Spin Tracking

At the IP

Conclusions

Alternative Detectors

Quartz Cherenkov Detector

[A. Vauth]

- high photon yield: $\sim 10^3$ photo e^- per Compton e^-
- can resolve Compton e^- peaks in photoelectron (QDC) spectrum
- \rightarrow “self-calibrating”
- optimised geometry based on Geant4 simulation

Silicon Pixel Detector

[G. Alexander, I. Ben Mordechai]

- option for transverse polarimetry
- standard LHC style pixel detector
- ok in terms of rad. hardness and occupancy (ILC upstream)
- simulation result based on ILC upstream chicane: can get $dP_y/P_y = 0.2\%$
Spin Tracking

Spin Tracking in Beam Delivery System

[M. Beckmann]

From upstream via IP to downstream

- using BMAD, based on full T-BMT equation
- for \(B_\perp \) only: \(\theta_{spin} = \left(\frac{g-2}{2} \cdot \gamma + 1 \right) \cdot \theta_{orbit} \approx 568 \cdot \theta_{orbit} \)
- start with \(P_z = 80\% \), show median \(\pm 1\sigma \) band from 1000 runs

- perfect lattice
- \(5(10) \, \mu m \) random misalignments (& corr. kickers, fast-feedback)
- + detector solenoid, anti-DID, crab cavities
- + collisions (500 GeV, w.s.)
Spin Tracking in Beam Delivery System

[M. Beckmann]

From upstream via IP to downstream

- using BMAD, based on full T-BMT equation
- for B_\perp only: $\theta_{\text{spin}} = \left(\frac{g-2}{2} \cdot \gamma + 1\right) \cdot \theta_{\text{orbit}} \simeq 568 \cdot \theta_{\text{orbit}}$
- start with $P_z = 80\%$, show median $\pm 1\sigma$ band from 1000 runs

- perfect lattice
- $5(10) \mu m$ random misalignments (& corr. kickers, fast-feedback)
- + detector solenoid, anti-DID, crab cavities
- + collisions (500 GeV, w.s.)
Spin Tracking in Beam Delivery System

From upstream via IP to downstream

- using BMAD, based on full T-BMT equation
- for B_\perp only: $\theta_{spin} = \left(\frac{g-2}{2} \cdot \gamma + 1 \right) \cdot \theta_{orbit} \simeq 568 \cdot \theta_{orbit}$
- start with $P_z = 80\%$, show median $\pm 1\sigma$ band from 1000 runs

- perfect lattice
- $5(10) \, \mu m$ random misalignments (& corr. kickers, fast-feedback)
- + detector solenoid, anti-DID, crab cavities
- + collisions (500 GeV, w.s.)
Measuring the Depolarisation

- Collision effect at IP $\simeq 0.2\%$
- Upstream measurement very close to $\langle P \rangle$
- P_z drops another $1.2\% \pm 0.5\%$ from IP to downstream pol.
- Dominated by energy spread after collision and extraction line quad’s
- Correlation with y position:
- Reduce effect by small laser spot?

⇒ Complement polarimeters with longterm $\langle P \rangle$ from collision data
Measuring the Depolarisation

- collision effect at IP $\simeq 0.2\%$
- upstream measurement very close to $\langle P \rangle$
- P_z drops another $1.2\% \pm 0.5\%$ from IP to downstream pol.
- dominated by energy spread after collision and extraction line quad’s
- correlation with y position:
- reduce effect by small laser spot?

\Rightarrow complement polarimeters with longterm $\langle P \rangle$ from collision data
Measuring the Depolarisation

- collision effect at IP $\simeq 0.2\%$
- upstream measurement very close to $\langle P \rangle$
- P_z drops another $1.2\% \pm 0.5\%$ from IP to downstream pol.
- dominated by energy spread after collision and extraction line quad's
- correlation with y position:
- reduce effect by small laser spot?

\Rightarrow complement polarimeters with longterm $\langle P \rangle$ from collision data
Depolarisation at CLIC [J. Esberg, D. Schulte et al]

- higher energy, smaller bunches ⇒ need strong field effects (c.f. talk by A. Hartin)!
- implemented in GuineaPig++
- studied depolarisation in collision as function of vertical offset of the beams ($\sigma_y = 1 \text{ nm}$)
- total depolarisation: $\gtrsim 6\%$
- only in 1% of nominal \sqrt{s}: $\lesssim 0.1\%$
- a priori don’t know actual \sqrt{s}' on single event basis, e.g. for channels with missing 4-momentum
Luminosity weighted polarisation average

\[\langle P \rangle \text{ from leptonic single } W / Z \text{ and single } \gamma \quad [G.\ Wilson] \]

- dominated by \(e^+ e^- \rightarrow W^{\pm} e^{\mp} \nu_e \) and \(e^+ e^- \rightarrow \nu_e \bar{\nu}_e Z / \gamma \)
- measure total 4 cross-sections for up to 9 possible polarisation configurations: \(+, -, ++, --, -0, +0, 0-, 0+, 00\)
- determine either \(|P^L_{e^-}| = |P^R_{e^-}| \) and \(|P^L_{e^+}| = |P^R_{e^+}| \) or additionally low small differences \(\delta_- \) and \(\delta_+ \)
- assume 2 ab\(^{-1}\) at 3 TeV, 25% +, 25% −, 50% others
- \(\delta \)'s free:
 \[\Delta |P_{e^+}| / |P_{e^+}| = 0.3\%, \Delta |P_{e^-}| / |P_{e^-}| = 0.16\%, \delta = 0 \pm 0.27\% \]
Luminosity weighted polarisation average

\[\langle P \rangle \text{ from } \frac{d\sigma(e^+e^- \rightarrow W^+W^-)}{d\cos\theta} \quad [I. \ Marchesini] \]

- measure for 4 sign combinations: \(P = (+, -), P = (-, +), P = (+, +), P = (-, -) \)
- fit for \(|P(e^+)|, |P(e^-)| \) (and triple gauge couplings)
- optionally unequal \(|P| \) ⇒ take differences from polarimeters
- can determine polarisations to 0.1...0.2\% level with \(\mathcal{O}(1\text{ab}^{-1}) \)
- systematically limited by polarimeters ⇒ minimize difference by fast helicity reversal or need additional runs with one \(P = 0 \)

60\% e^+

30\% e^+
Conclusions

- per mille level determination of the luminosity weighted polarisation average $\langle P \rangle$ needs
 - excellent Compton polarimetry
 - detailed understanding of spin transport between polarimeter(s) and IP
 - detailed understanding of collision effects
 - cross-check from collision data
- in all these aspects progress has been achieved
- measuring $\langle P \rangle$ to a few per mille seems achievable for ILC
- less studied so far, but probably also valid for CLIC