Charmless Two-Body B Decays Involving a Tensor Meson

Kwei-Chou Yang Chung-Yuan Christian University, Taiwan

The 36th International Conference on High Energy Physics (ICHEP2012)

Outline

♦ Polarization puzzles in $B \rightarrow V V$ ---- SM or New-Physics

B decays involving a tensor meson
 ----further test: SM or New-Physics

♦ Conclusion

Introduction

■Polarization puzzle in charmless B→VV decays

$$H_{00}: H_{--}: H_{++} = 1: \frac{\Lambda}{m_b}: \left(\frac{\Lambda}{m_b}\right)^2$$

In transversity basis $A_{\perp} = (H^{--} + H^{++})/\sqrt{2}, \quad A_{||} = (H^{--} - H^{++})/\sqrt{2}$

$$f_T \equiv f_{\parallel} + f_{\perp} = 1 - f_L = O(m_V^2 / m_B^2), \quad f_{\parallel} / f_{\perp} = 1 + O(m_V / m_B)$$

Why is f_T sizable ~ 0.5 in B \rightarrow K* ϕ decays ?

Search of new physics in B→VV decays ?

Explanation within the SM: Annihilation

In SM, the Annihilation effect is important:

■Annihilation
$$H_{00}$$
: H_{--} : $H_{++} = \frac{1}{m_b^2} ln^2 \frac{m_b}{\Lambda}$: $\frac{1}{m_b^2} ln^2 \frac{m_b}{\Lambda}$: $\frac{1}{m_b^4}$ (Kagan, 04)

Annihilation topology:
$$\longrightarrow$$
 overall $1/m_b$

$$\int_{1}^{1} dx$$

Parametrization
$$\int_{0}^{1} \frac{dx}{x} = \ln \frac{m_{B}}{\Lambda} (1 + \rho_{A} e^{i\phi_{A}})$$

$B \rightarrow K^* \phi$ (without annihilation)

$$\begin{split} \mathcal{A}^h_{\bar{B}\to\bar{K}^*\phi} &\approx V_c(\alpha_3^h + \alpha_4^{c,h} + \beta_3^h - \frac{1}{2}\alpha_{3,\mathrm{EW}}^h)X_{\bar{K}^*\phi}^h. \\ \alpha_3 &= a_3 + a_5, \quad \alpha_4 = a_4 - r_\chi^\phi a_6, \quad \alpha_{3,\mathrm{EW}} = a_9 + a_7, \quad \beta_3 = \text{penguin ann} \\ X_{\overline{K}^*\phi}^h &= \langle \phi \, | \, J_\mu \, | \, 0 \rangle \langle \, \overline{K}^* \, | \, J^\mu \, | \, B \rangle, \qquad | \, X_{\overline{K}^*\phi}^0 \, | : | \, X_{\overline{K}^*\phi}^- \, | : | \, X_{\overline{K}^*\phi}^+ \, | = 1 : 0.35 : 0.007 \\ & \text{h=0} \qquad \qquad \text{h=-} \qquad \qquad \text{h=0} \qquad \qquad \text{h=-} \end{split}$$

Coefficients are helicity dependent!

PRD,2008, Hai-Yang Cheng, KCY

$$\frac{\mathcal{A}^{-}}{\mathcal{A}^{0}}\bigg|_{\bar{B}\to \bar{K}^{*}\phi} \approx \left(\frac{\alpha_{3}^{-} + \alpha_{4}^{c,-} - \frac{1}{2}\alpha_{3,\mathrm{EW}}^{-}}{\alpha_{3}^{0} + \alpha_{4}^{c,0} - \frac{1}{2}\alpha_{3,\mathrm{EW}}^{0}}\right) \left(\frac{X_{\bar{K}^{*}\phi}^{-}}{X_{\bar{K}^{*}\phi}^{0}}\right) \text{ with } \beta_{3}=0$$

constructive (destructive) interference in $A^{-}(A^{0}) \Rightarrow f_{1} \sim 0.58$

NLO corrections alone will bring down f_L significantly!

Br ~4.3*10⁻⁶ (without annihilation), too small compared with data

Although f_L is reduced to 60% level, polarization puzzle is not resolved as the predicted rate, BR~ 4.3*10⁻⁶, is too small compared to the data, ~ 10*10⁻⁶ for B \rightarrow K* ϕ

$$P^{c} = [a_{4}^{c} + r_{\chi} a_{6}^{c}]_{SD} + \beta_{3}^{c} + \dots$$
penguin annihilation

■ Br & f_L are fit by adjusting $\Rightarrow \rho_A \simeq 0.65$, $\phi_A \simeq -53^\circ$

Decay	${\cal B}$		f_L		f_{\perp}	
	Theory	Expt	Theory	Expt	Theory	Expt
$B^- \to K^{*-} \phi$	$10.0^{+1.4+12.3}_{-1.3-6.1}$	10.0 ± 1.1	$0.49^{+0.51}_{-0.42}$	0.50 ± 0.05	$0.25^{+0.21}_{-0.25}$	0.20 ± 0.05
$\overline{B}^0 \to \bar{K}^{*0} \phi$	$9.5^{+1.3+11.9}_{-1.2-5.9}$	9.5 ± 0.8	$0.50^{+0.50}_{-0.42}$	0.484 ± 0.034	$0.25^{+0.21}_{-0.25}$	0.256 ± 0.032

$$f_{\parallel} = f_{\perp} = 0.25$$

Parameter	h = 0	h = -	Parameter	h = 0	h = -
$\alpha_1(ho K^*)$	0.96 + 0.02i	1.11 + 0.03i	$lpha_{3, ext{EW}}(K^* ho)$	-0.009 - 0.000i	0.005 - 0.000i
$lpha_2(K^* ho)$	0.28 - 0.08i	-0.17 - 0.17i	$lpha_{4, ext{EW}}(K^* ho)$	$-0.002 +\ 0.001i$	0.001 + 0.001i
$lpha_4^u(ho K^*)$	$-0.022 - \ 0.014i$	$-0.048-\ 0.016i$	$eta_3(ho K^*)$	$0.015 - \ 0.020i$	-0.012 + 0.016i
$lpha_4^c(ho K^*)$	$-0.026-\ 0.014i$	$-0.050-\ 0.006i$			

$$\frac{\mathcal{A}^{-}}{\mathcal{A}^{0}} \bigg|_{\bar{B}^{0} \to \bar{K}^{*0} \rho^{0}} \approx \left(\frac{\alpha_{4}^{c,-} - \frac{3}{2} \alpha_{3,\mathrm{EW}}^{-}}{\alpha_{4}^{c,0} - \frac{3}{2} \alpha_{3,\mathrm{EW}}^{0}} \right) \left(\frac{X_{\bar{K}^{*} \rho}^{-}}{X_{\bar{K}^{*} \rho}^{0}} \right) \\
\frac{\mathcal{A}^{-}}{\mathcal{A}^{0}} \bigg|_{B^{-} \to K^{*-} \rho^{0}} \approx \left(\frac{\alpha_{4}^{c,-} + \frac{3}{2} \alpha_{3,\mathrm{EW}}^{-}}{\alpha_{4}^{c,0} + \frac{3}{2} \alpha_{3,\mathrm{EW}}^{0}} \right) \left(\frac{X_{\bar{K}^{*} \rho}^{-}}{X_{\bar{K}^{*} \rho}^{0}} \right) \right)$$

destructive destructive constructive

with β_3 =0

 \Rightarrow f_L(K*- ρ^0)=0.96, f_L(K*0 ρ^0)=0.47 (=0.91 if a_{i}^h are helicity indep)

Decay	I	\mathbf{Expt}				
Decay	\mathcal{B}	f_L	\mathcal{B}	f_L		
$B^- o ar K^{*0} ho^-$	9.2 ± 1.5	0.48 ± 0.08	3.8	0.78		
$B^- \to K^{*-} \rho^0$	< 6.1	$0.96^{+0.06}_{-0.16}$	3.6	0.96		
$\overline B^0 o K^{*-} ho^+$	< 12	_	3.6	0.84		
$\overline B^0 o ar K^{*0} ho^0$	$\underline{5.6\pm1.6}$	0.57 ± 0.12	<u>1.1</u>	0.47		

Without Annihilation

But, the predicted rates for $K^{*-}\rho^{0}$ & $K^{*0}\rho^{0}$ are too small !

Choose $K^{*0}\rho^{-}$ as an input, a fit to BR and f_L yields $\rho_A \simeq 0.78$, $\phi_A \simeq -43^{\circ}$, slightly different from the ones $\rho_A \simeq 0.65$, $\phi_A \simeq -53^{\circ}$ inferred from $B \rightarrow K^* \phi$

Process dependent

Decay			f_L		f_{\perp}	
2 ccay	Theory	Expt	Theory	Expt	Theory	\mathbf{Expt}
$B^- \to \bar{K}^{*0} \rho^{-a}$	$9.2^{+1.2+3.6}_{-1.1-5.4}$	9.2 ± 1.5	$0.48^{+0.52}_{-0.40}$	0.48 ± 0.08	$0.26^{+0.20}_{-0.26}$	
$B^- o K^{*-} ho^0$	$5.5^{+0.6+1.3}_{-0.5-2.5}$	4.6 ± 1.1	$0.67^{+0.31}_{-0.48}$	0.78 ± 0.12	$0.16^{+0.24}_{-0.15}$	
$\overline{B}^0 \to K^{*-} \rho^+$	$8.9^{+1.1+4.8}_{-1.0-5.5}$	< 12	$0.53^{+0.45}_{-0.32}$		$0.24^{+0.16}_{-0.22}$	
$\overline B^0 o ar K^{*0} ho^0$	$4.6^{+0.6+3.5}_{-0.5-3.5}$	3.4 ± 1.0	$0.39^{+0.60}_{-0.31}$	0.40 ± 0.14	$0.30^{+0.15}_{-0.30}$	

$$f_L(K^{*-}\rho^0) > f_L(K^{*-}\rho^+) > f_L(\bar{K}^{*0}\rho^-) > f_L(\bar{K}^{*0}\rho^0)$$

Tree-dominated VV modes

Decay	\mathcal{B}		f_L		f_{\perp}	
Decay	Theory	Expt	Theory	Expt	Theory	Expt
$B^- \to \rho^- \rho^0$	$20.0^{+4.0+2.0}_{-1.9-0.9}$	$24.0^{+1.9}_{-2.0}$	$0.96^{+0.02}_{-0.02}$	0.950 ± 0.016	0.02 ± 0.01	
$\overline{B}^0 \to \rho^+ \rho^-$	$25.5^{+1.5+2.4}_{-2.6-1.5}$	$24.2^{+3.1}_{-3.2}$	$0.92^{+0.01}_{-0.02}$	$0.978^{+0.025}_{-0.022}$	$0.04^{+0.01}_{-0.00}$	
$\overline B^0 o ho^0 ho^0$	$0.9^{+1.5}_{-0.4}^{+1.1}_{-0.2}$	$0.73^{+0.27}_{-0.28}$	$0.92^{+0.06}_{-0.36}$	$0.75^{+0.12}_{-0.15}$	$0.04^{+0.14}_{-0.03}$	
$B^- \to \rho^- \omega$	$19.2^{+3.3+1.7}_{-1.6-1.0}$	15.9 ± 2.1	$0.96^{+0.02}_{-0.02}$	0.90 ± 0.06	0.02 ± 0.01	
$\overline{B}^0 o ho^0 \omega$	$0.1^{+0.1+0.4}_{-0.1-0.0}$	< 1.5	$0.55^{+0.47}_{-0.29}$		$0.22^{+0.16}_{-0.23}$	

- Longitudinal amplitude dominates tree-dominated decays except for $\rho^0\omega$
- Predicted $B\rightarrow \rho\rho$, $\omega\rho$ rates agree with the data.

H.Y. Cheng & KCY, PRD, 2008 vs. data (2010)

Central values correspond to $\rho_A = \phi_A = 0$

Scenario with New Physics

Possible New Physics

$$\blacksquare \overline{s}\sigma^{\mu\nu}(1+\gamma_5)b\ \overline{s}\sigma_{\mu\nu}(1+\gamma_5)s$$
, $\overline{s}(1+\gamma_5)b\ \overline{s}(1+\gamma_5)s$

$$\overline{H}_{00}:\overline{H}_{--}:\overline{H}_{++}\sim\mathcal{O}(1/m_b):\mathcal{O}(1):\mathcal{O}(1/m_b^2)$$

$$\underline{\bullet} \overline{s} \sigma^{\mu\nu} (1 - \gamma_5) b \overline{s} \sigma_{\mu\nu} (1 - \gamma_5) s, \overline{s} (1 - \gamma_5) b \overline{s} (1 - \gamma_5) s$$

$$\overline{H}_{00}:\overline{H}_{--}:\overline{H}_{++}\sim\mathcal{O}(1/m_b):\mathcal{O}(1/m_b^2):\mathcal{O}(1)$$

TENSOR operators can be related to the SCALAR operators by Fierz transformation.

Phys. Rev. D71, 094002 (2005), KCY& Das

Table 2: Possible NP operators and their candidacy in satisfying the anomaly resolution criteria. We have adopted the convention $\Gamma_1 \otimes \Gamma_2 \equiv \overline{s}\Gamma_1 b \ \overline{s}\Gamma_2 s$.

Model	Operators	\overline{H}_{00}	$\overline{H}_{}$	\overline{H}_{++}	Choice
SM	$\gamma^{\mu}(1-\gamma_5)\otimes\gamma_{\mu}(1\mp\gamma_5)$	$\mathcal{O}(1)$	$\mathcal{O}(1/m_b)$	$\mathcal{O}(1/m_b^2)$	
NP	$\gamma^{\mu}(1+\gamma_5)\otimes\gamma_{\mu}(1+\gamma_5)$	$\mathcal{O}(1)$	$\mathcal{O}(1/m_b^2)$	$\mathcal{O}(1/m_b)$	N
NP	$\gamma^{\mu}(1+\gamma_5)\otimes\gamma_{\mu}(1-\gamma_5)$	$\mathcal{O}(1)$	$\mathcal{O}(1/m_b^2)$	$\mathcal{O}(1/m_b)$	N
NP	$(1+\gamma_5)\otimes(1+\gamma_5)$	$\mathcal{O}(1/m_b)$	$\mathcal{O}(1)$	$\mathcal{O}(1/m_b^2)$	Υ
NP	$(1-\gamma_5)\otimes(1-\gamma_5)$	$\mathcal{O}(1/m_b)$	$\mathcal{O}(1/m_b^2)$	$\mathcal{O}(1)$	Υ
NP	$(1+\gamma_5)\otimes(1-\gamma_5)$	$\mathcal{O}(1)$	$\mathcal{O}(1/m_b^2)$	$\mathcal{O}(1/m_b)$	N
NP	$(1-\gamma_5)\otimes(1+\gamma_5)$	$\mathcal{O}(1)$	$\mathcal{O}(1/m_b)$	$\mathcal{O}(1/m_b^2)$	N
NP	$\sigma^{\mu\nu}(1+\gamma_5)\otimes\sigma_{\mu\nu}(1+\gamma_5)$	$\mathcal{O}(1/m_b)$	$\mathcal{O}(1)$	$\mathcal{O}(1/m_b^2)$	Υ
NP	$\sigma^{\mu\nu}(1-\gamma_5)\otimes\sigma_{\mu\nu}(1-\gamma_5)$	$\mathcal{O}(1/m_b)$	$\mathcal{O}(1/m_b^2)$	$\mathcal{O}(1)$	Υ
NP	$\sigma^{\mu\nu}(1+\gamma_5)\otimes\sigma_{\mu\nu}(1-\gamma_5)$	$\mathcal{O}(1)$	$\mathcal{O}(1/m_b^2)$	$\mathcal{O}(1/m_b)$	N
NP	$\sigma^{\mu\nu}(1-\gamma_5)\otimes\sigma_{\mu\nu}(1+\gamma_5)$	$\mathcal{O}(1)$	$\mathcal{O}(1/m_b)$	$\mathcal{O}(1/m_b^2)$	N

Two-body B decays involving a tensor meson

Light-cone distribution amplitudes for a tensor meson

chiral-even

$$\langle T(P,\lambda)|\bar{q}_{1}(y)\gamma_{\mu}q_{2}(x)|0\rangle = -if_{T}m_{T}^{2}\int_{0}^{1}du\,e^{i(uPy+\bar{u}Px)}\bigg\{P_{\mu}\frac{\epsilon_{\alpha\beta}^{(\lambda)*}z^{\alpha}z^{\beta}}{(Pz)^{2}} \Phi_{\parallel}^{T}(u) + \bigg(\frac{\epsilon_{\mu\alpha}^{(\lambda)*}z^{\alpha}}{Pz}-P_{\mu}\frac{\epsilon_{\beta\alpha}^{(\lambda)*}z^{\beta}z^{\alpha}}{(Pz)^{2}}\bigg)g_{\nu}(u) - \frac{1}{2}z_{\mu}\frac{\epsilon_{\alpha\beta}^{(\lambda)*}z^{\alpha}z^{\beta}}{(Pz)^{3}}m_{T}^{2}\bar{g}_{3}(u) + \mathcal{O}(z^{2})\bigg\},$$

$$\langle T(P,\lambda)|\bar{q}_{1}(y)\gamma_{\mu}\gamma_{5}q_{2}(x)|0\rangle = -if_{T}m_{T}^{2}\int_{0}^{1}du\,e^{i(uPy+\bar{u}Px)}\varepsilon_{\mu\nu\alpha\beta}z^{\nu}P^{\alpha}\epsilon_{(\lambda)}^{*\beta\delta}z_{\delta}\frac{1}{2Pz}g_{a}(u)$$

$$\frac{\mathbf{chiral-odd}}{\langle T(P,\lambda)|\bar{q}_{1}(y)\sigma_{\mu\nu}q_{2}(x)|0\rangle} = -f_{T}^{\perp}m_{T}\int_{0}^{1}du\,e^{i(uPy+\bar{u}Px)}\bigg\{\bigg[\epsilon_{\mu\alpha}^{(\lambda)*}z^{\alpha}P_{\nu} - \epsilon_{\nu\alpha}^{(\lambda)*}z^{\alpha}P_{\mu}\bigg]\frac{1}{Pz}\Phi_{\perp}^{T}(u)\bigg\}$$

$$\overline{\langle T(P,\lambda)|\bar{q}_1(y)\sigma_{\mu\nu}q_2(x)|0\rangle} = -f_T^{\perp}m_T\int_0^1\!du\,e^{i(uPy+\bar{u}Px)}\left\{\left[\epsilon_{\mu\alpha}^{(\lambda)*}z^{\alpha}P_{\nu} - \epsilon_{\nu\alpha}^{(\lambda)*}z^{\alpha}P_{\mu}\right]\frac{1}{Pz}\Phi_{\perp}^T(u)\right\}$$

twist-2:
$$\Phi_{\parallel}, \Phi_{\perp}$$

twist-3:
$$g_v$$
, g_a , h_t , h_s

$$+ (P_{\mu}z_{\nu} - P_{\nu}z_{\mu}) \frac{m_T^2 \epsilon_{\alpha\beta}^{(\lambda)*} z^{\alpha} z^{\beta}}{(Pz)^3} \overline{h_t(u)}$$

$$+ \frac{1}{2} \left[\epsilon_{\mu\alpha}^{(\lambda)*} z^{\alpha} z_{\nu} - \epsilon_{\nu\alpha}^{(\lambda)*} z^{\alpha} z_{\mu} \right] \frac{m_T^2}{(Pz)^2} \bar{h}_3(u) + \mathcal{O}(z^2) \right\},$$

$$\langle T(P,\lambda)|\bar{q}_1(y)q_2(x)|0\rangle \ = \ -f_T^{\perp}m_T^3\int\limits_0^1\!du\,e^{i(uPy+\bar{u}Px)}\frac{\epsilon_{\alpha\beta}^{(\lambda)*}z^{\alpha}z^{\beta}}{2Pz}h_s(u)$$

PRD82:054019,2010, H.Y. Cheng, Y. Koike, KCY

Asymptotic form of chiral-even DAs is first studied by Braun & Kivel (*01)

³P₂ tensor meson

Due to G-parity, Φ_{\perp} , $h_{\parallel}^{(\dagger)}$, $h_{\parallel}^{(p)}$, Φ_{\parallel} , $g_{\perp}^{(v)}$, $g_{\perp}^{(a)}$ are antisymmetric with the replacement $u\rightarrow 1-u$ in SU(3) limit

$$\int_0^1 du \Phi_{\parallel}(u) = \int_0^1 du g_{\perp}^{(a)}(u) = \int_0^1 du g_{\perp}^{(v)}(u) = \int_0^1 du g_3(u) = 0$$

$$\Phi_{||,\perp}^T(u,\mu) = 6u(1-u)\sum_{\ell=0}^{\infty}a_{\ell}^{(||,\perp),T}(\mu)C_{\ell}^{3/2}(2u-1).$$

C_i3/2: Gegenbauer polynomial

$$\Phi_{\parallel,\perp}(u) \simeq 6u(1-u)(2u-1) a_1^{\parallel,\perp}$$
twist-2: $\Phi_{\parallel},\Phi_{\perp}$

twist-3: $g_{\perp}^{(v)}, g_{\perp}^{(a)}, h_{\perp}^{(t)}, h_{\parallel}^{(p)}$ related to twist-2 ones via Wandzura-Wilczek relations (neglecting 3-parton distributions)

$$g_{v}^{WW}(u) = \int_{0}^{u} dv \, \frac{\Phi_{\parallel}^{T}(v)}{\bar{v}} + \int_{u}^{1} dv \, \frac{\Phi_{\parallel}^{T}(v)}{v} \,,$$

$$g_{a}^{WW}(u) = 2\bar{u} \int_{0}^{u} dv \, \frac{\Phi_{\parallel}^{T}(v)}{\bar{v}} + 2u \int_{u}^{1} dv \, \frac{\Phi_{\parallel}^{T}(v)}{v} \,,$$

$$h_{t}^{WW}(u) = \frac{3}{2} (2u - 1) \left(\int_{0}^{u} dv \, \frac{\Phi_{\perp}^{T}(v)}{\bar{v}} - \int_{u}^{1} dv \, \frac{\Phi_{\perp}^{T}(v)}{v} \right)$$

$$h_{s}^{WW}(u) = 3 \left(\bar{u} \int_{0}^{u} dv \, \frac{\Phi_{\perp}^{T}(v)}{\bar{v}} + u \int_{0}^{1} dv \, \frac{\Phi_{\perp}^{T}(v)}{v} \right) \,.$$

$$h_s^{WW}(u) = 3\left(\bar{u}\int_0^u dv \frac{\Phi_{\perp}^T(v)}{\bar{v}} + u\int_u^1 dv \frac{\Phi_{\perp}^T(v)}{v}\right)$$

Decay constants

Tensor meson cannot be produced from local V-A current owing

to
$$\varepsilon_{\mu\nu} \mathbf{p}^{\nu} = \mathbf{0}$$
 $\langle T(p,\lambda) | V_{\mu}, A_{\mu} | 0 \rangle = 0$

Can be created from local current involving covariant derivatives

$$\begin{split} \langle T(P,\lambda)|J_{\mu\nu}(0)|0\rangle &= f_T m_T^2 \epsilon_{\mu\nu}^{*(\lambda)},\\ \langle T(P,\lambda)|J_{\mu\nu\alpha}^\perp(0)|0\rangle &= -i f_T^\perp m_T (\epsilon_{\mu\alpha}^{(\lambda)*} P_\nu - \epsilon_{\nu\alpha}^{(\lambda)*} P_\mu), \end{split}$$
 with
$$J_{\mu\nu}(0) &= \frac{1}{2} \Big(\bar{q}_1(0) \gamma_\mu i \stackrel{\leftrightarrow}{D}_\nu q_2(0) + \bar{q}_1(0) \gamma_\nu i \stackrel{\leftrightarrow}{D}_\mu q_2(0) \Big)\\ J_{\mu\nu\alpha}^\perp(0) &= \bar{q}_1(0) \sigma_{\mu\nu} i \stackrel{\leftrightarrow}{D}_\alpha q_2(0), \end{split}$$
 Normalized with $a_1^\parallel = a_1^\perp = \frac{5}{3}$

Previous estimates: Aliev & Shifman ('82); Aliev, Azizi, Bashiry ('10)

Based on QCD sum rules we obtain (Cheng, Koike, KCY, arXiv:1007.3526)

Light tensor mesons [40]	$f_T \text{ (MeV)}$	f_T^{\perp} (MeV)
$f_2(1270)$	102 ± 6	117 ± 25
$f_2'(1525)$	126 ± 4	65 ± 12
$a_2(1320)$	107 ± 6	105 ± 21
$K_2^*(1430)$	118 ± 5	77 ± 14

VT modes

Data from BaBar

branching fractions (in units of 10^{-6})

Mode	${\cal B}$	f_L	Mode	${\cal B}$	f_L
$\mathcal{B}(B^+ \to K_2^*(1430)^+\omega)$	21.5 ± 4.3	0.56 ± 0.11	$\mathcal{B}(B^0 \to K_2^*(1430)^0 \omega)$	10.1 ± 2.3	0.45 ± 0.12
$\mathcal{B}(B^+ \to K_2^*(1430)^+ \phi)$	8.4 ± 2.1	0.80 ± 0.10	$\mathcal{B}(B^0 \to K_2^*(1430)^0 \phi)$	7.5 ± 1.0	$0.901^{+0.059}_{-0.069}$

$$K_2^* \omega = 0.05 \sim 0.1$$

 $K_2^* \phi = 2 \sim 9$

Naïve factorization, Kim,Lee & Oh, PRD (2003); Munoz,Quintero, J.Phys.G (2009)

QCD factorization (without annihilation) $K_2^*\omega \sim 0.2$, $K_2^*\phi = 3$ too small

Within SM, to account for data, penguin annihilation is necessary

PRD83:034001,2011, Hai-Yang Cheng, KCY

$$\begin{split} \sqrt{2}\mathcal{A}_{B^-\to K_2^{*-}\omega}^h \; \approx \; \sqrt{2}\mathcal{A}_{\overline{B}^0\to \overline{K}_2^{*0}\omega}^h \approx & \left\{ \left[\alpha_4^{p,h} + \beta_3^{p,h}\right] \overline{X}_h^{(\overline{B}\omega,\overline{K}_2^*)} + \left[2\alpha_3^{p,h}\right] X_h^{(\overline{BK}_2^*,\omega)} \right\} \\ \mathcal{A}_{B^-\to K_2^{*-}\phi}^h \; \approx \; \mathcal{A}_{\overline{B}^0\to \overline{K}_2^{*0}\phi}^h \approx & \left[\alpha_3^{p,h} + \alpha_4^{p,h} + \beta_3^{p,h} + \beta_{3,\mathrm{EW}}^{p,h}\right] X_h^{(\overline{BK}_2^*,\phi)}. \end{split}$$

Ann is dominant for

$$(M_1, M_2) = \begin{cases} (K_2^* \phi) \\ (\omega K_2^*) \end{cases}$$

To account for data, penguin annihilation is necessary

$$ho_A^{TV} \simeq 0.65, \; \phi_A^{TV} \simeq -33^\circ, \; (K_2^*\phi) \; \text{ where } M_1 = T, M_2 = V \
ho_A^{VT} \simeq 1.20, \; \rho_A^{VT} \simeq -60^\circ, \; (\omega K_2^*) \; \text{where } M_1 = V, M_2 = T \$$

Polarization puzzle in B \rightarrow K₂* ϕ

$$f_1(K_2^{*+}\omega) = 0.56\pm0.11, f_1(K_2^{*0}\omega) = 0.45\pm0.12,$$

BaBar

$$f_L(K_2^{*+}\phi) = 0.80\pm0.10, f_L(K_2^{*0}\phi) = 0.901^{+0.059}_{-0.069}$$

Why is $f_T/f_1 <<1$ for $B \to K_2^* \phi$ and $f_T/f_1 \sim 1$ for $B \to K_2^* \omega$? Why is that f_T behaves differently in $K_2^*\phi$ and $K^*\phi$?

In QCDF, f_1 is very sensitive to the phase ϕ_A^{TV} for $B \to K_2^* \phi$, but not so sensitive to ϕ_{Δ}^{VT} for $B \rightarrow K_2^* \omega$

$$f_L(K_2^*\phi) = 0.88, 0.72, 0.48 \text{ for } \phi_A^{TV} = -30^\circ, -45^\circ, -60^\circ, f_L(K_2^*\omega) = 0.68, 0.66, 0.64 \text{ for } \phi_A^{VT} = -30^\circ, -45^\circ, -60^\circ$$

Rates & polarization fractions can be accommodated in QCDF

$$ho_A^{TV}=0.65,$$

$$ho_A^{TV} = 0.65, \qquad \phi_A^{TV} = -33^{\circ}, \qquad \rho_A^{VT} = 1.20, \qquad \phi_A^{VT} = -60^{\circ}$$

$$\rho_A^{VT}=1.20,$$

$$\phi_A^{VT} = -60^{\circ}$$

but no dynamical explanation is offered

Fine-tuning!

Further test

$f_{\rm r} = 0.65$			
$t_r = 0.65$	C	\sim	
$I_{T} - (I_{-}(),)$	+ .		1 h
	<i> T -</i>	— U	_ () .)
		•	100

Decay		1	3			f _L	A_{CP}
Decay	QCDF	KLO [20]	MQ [21]	Expt.	QCDF	Expt.	АСР
$B^- \to \bar{K}_2^* (1430)^0 \rho^-$	1112				$0.63^{+0.10}_{-0.09}$		$-1.0^{+0.8}_{-1.0}$
$B^- \to K_2^*(1430)^- \rho^0$	0.2	0.253	0.74		$0.66^{+0.06}_{-0.07}$		$2.1^{+11.1}_{-9.9}$
$\overline{B}^0 \to K_2^*(1430)^- \rho^+$	$19.8^{+52.0}_{-18.2}$				$0.64^{+0.07}_{-0.03}$		$-1.5^{+2.6}_{-2.0}$
$\overline{B}^0 \to \bar{K}_2^*(1430)^0 \rho^0$	$9.5^{+33.4}_{-\ 9.5}$	0.235	0.68		$0.64^{+0.15}_{-0.37}$		$-4.0^{+14.1}_{-10.8}$
$B^-\to K_2^*(1430)^-\omega$	$7.5^{+19.7}_{-7.0}$	0.112	0.06	21.5 ± 4.3	-0.07	0.56 ± 0.11	$2.0^{+12.2}_{-10.5}$
$\bar{B}^0 \to \bar{K}_2^* (1430)^0 \omega$	$8.1^{+21.7}_{-7.6}$	0.104	0.053	10.1 ± 2.3	$0.66^{+0.11}_{-0.15}$	0.45 ± 0.12	$4.4^{+10.9}_{-10.0}$
$B^- \to K_2^*(1430)^- \phi$	$7.4^{+25.8}_{-5.2}$	2.180	9.24	8.4 ± 2.1	$0.85^{+0.16}_{-0.77}$	0.80 ± 0.10	$0.1^{+1.2}_{-0.5}$
$\bar{B}^0 \to \bar{K}_2^* (1430)^0 \phi$	$7.7^{+26.9}_{-5.5}$	2.024	8.51	7.5 ± 1.0	$0.86^{+0.16}_{-0.77}$	$0.901^{+0.059}_{-0.069}$	$0.09^{+0.82}_{-0.21}$
$B^- \to a_2(1320)^0 K^*$		1.852	2.80		$0.73^{+0.22}_{-0.33}$		$-15.0^{+56.0}_{-15.0}$
$B^- \to a_2(1320)^- \overline{K}^*$	$6.1^{+23.8}_{-5.4}$	4.495	8.62		$0.79^{+0.20}_{-0.64}$		$-0.1^{+1.3}_{-0.3}$
$\overline{B}^0 \to a_2(1320)^+ K^*$	0.0	3.477	7.25		$0.77^{+0.19}_{-0.46}$	$f_L = 0.93$	$-13.3^{+38.2}_{-7.0}$
$\overline{B}^0 \to a_2(1320)^0 \overline{K}^{*0}$	$3.4^{+12.4}_{-2.8}$	2.109	4.03		$0.82^{+0.14}_{-0.67}$	7	$1.2^{+\ 7.0}_{-13.3}$
$B^- \to f_2(1270)K^{*-}$	$8.3^{+17.3}_{-6.7}$	2.032			$0.93^{+0.0}_{-0.63}$		$-8.1^{+13.7}_{-7.1}$
$\overline{B}^0 \to f_2(1270) \overline{K}^{*0}$	$9.1^{+18.8}_{-7.3}$	2.314			$0.94^{+0.06}_{-0.69}$		$-0.08^{+4.3}_{-3.1}$
$B^- \to f_2'(1525) K^{*-}$	$12.6^{+24.0}_{-11.1}$	0.025			$0.65^{+0.28}_{-0.38}$		$0.6^{+2.5}_{-2.9}$
$\overline{B}^0 \to f_2'(1525)\overline{K}^{*0}$	$13.5^{+25.4}_{-11.9}$	0.029			$0.66^{+0.27}_{-0.38}$		$0.2^{+0.3}_{-0.4}$

New Physics due to tensor currents

$$\overline{A}_{0}^{NP} = 4i f_{\phi}^{T} m_{B}^{2} \left[\tilde{a}_{23} - \tilde{a}_{25} \right] \left[h_{2} T_{2} (m_{\phi}^{2}) - h_{3} T_{3} (m_{\phi}^{2}) \right] \frac{p_{3}}{m_{K_{2}^{*}}} \sqrt{\frac{2}{3}},$$

$$\overline{A}_{\parallel}^{NP} = -4i \sqrt{2} f_{\phi}^{T} m_{B}^{2} (\tilde{a}_{23} - \tilde{a}_{25}) f_{2} T_{2} (m_{\phi}^{2}) \frac{p_{3}}{m_{K_{2}^{*}}} \sqrt{\frac{1}{2}},$$

$$\overline{A}_{\perp}^{NP} = -4i \sqrt{2} f_{\phi}^{T} m_{B}^{2} (\tilde{a}_{23} + \tilde{a}_{25}) f_{1} T_{1} (m_{\phi}^{2}) \frac{p_{3}}{m_{K_{2}^{*}}} \sqrt{\frac{1}{2}},$$

$$\overline{A}_{\perp}^{NP} = -4i \sqrt{2} f_{\phi}^{T} m_{B}^{2} (\tilde{a}_{23} + \tilde{a}_{25}) f_{1} T_{1} (m_{\phi}^{2}) \frac{p_{3}}{m_{K_{2}^{*}}} \sqrt{\frac{1}{2}},$$

$$\overline{A}_{\perp}^{NP} = -4i \sqrt{2} f_{\phi}^{T} m_{B}^{2} (\tilde{a}_{23} + \tilde{a}_{25}) f_{1} T_{1} (m_{\phi}^{2}) \frac{p_{3}}{m_{K_{2}^{*}}} \sqrt{\frac{1}{2}},$$

$$\overline{A}_{\parallel}^{NP} = -4i \sqrt{2} f_{\phi}^{T} m_{B}^{2} (\tilde{a}_{23} + \tilde{a}_{25}) f_{1} T_{1} (m_{\phi}^{2}) \frac{p_{3}}{m_{K_{2}^{*}}} \sqrt{\frac{1}{2}},$$

$$\overline{A}_{\parallel}^{NP} = -4i \sqrt{2} f_{\phi}^{T} m_{B}^{2} (\tilde{a}_{23} + \tilde{a}_{25}) f_{1} T_{1} (m_{\phi}^{2}) \frac{p_{3}}{m_{K_{2}^{*}}} \sqrt{\frac{1}{2}},$$

$$\overline{A}_{\parallel}^{NP} = -4i \sqrt{2} f_{\phi}^{T} m_{B}^{2} (\tilde{a}_{23} + \tilde{a}_{25}) f_{1} T_{1} (m_{\phi}^{2}) \frac{p_{3}}{m_{K_{2}^{*}}} \sqrt{\frac{1}{2}},$$

$$\overline{A}_{\parallel}^{NP} = -4i \sqrt{2} f_{\phi}^{T} m_{B}^{2} (\tilde{a}_{23} + \tilde{a}_{25}) f_{1} T_{1} (m_{\phi}^{2}) \frac{p_{3}}{m_{K_{2}^{*}}} \sqrt{\frac{1}{2}},$$

$$\overline{A}_{\parallel}^{NP} = -4i \sqrt{2} f_{\phi}^{T} m_{B}^{2} (\tilde{a}_{23} + \tilde{a}_{25}) f_{1} T_{1} (m_{\phi}^{2}) \frac{p_{3}}{m_{K_{2}^{*}}} \sqrt{\frac{1}{2}},$$

$$\overline{A}_{\parallel}^{NP} = -4i \sqrt{2} f_{\phi}^{T} m_{B}^{2} (\tilde{a}_{23} + \tilde{a}_{25}) f_{1} T_{1} (m_{\phi}^{2}) \frac{p_{3}}{m_{K_{2}^{*}}} \sqrt{\frac{1}{2}},$$

$$\overline{A}_{\parallel}^{NP} = -4i \sqrt{2} f_{\phi}^{T} m_{B}^{2} (\tilde{a}_{23} + \tilde{a}_{25}) f_{1} T_{1} (m_{\phi}^{2}) \frac{p_{3}}{m_{K_{2}^{*}}} \sqrt{\frac{1}{2}},$$

$$\overline{A}_{\parallel}^{NP} = -4i \sqrt{2} f_{\phi}^{T} m_{B}^{2} (\tilde{a}_{23} + \tilde{a}_{25}) f_{1} T_{1} (m_{\phi}^{2}) \frac{p_{3}}{m_{K_{2}^{*}}} \sqrt{\frac{1}{2}},$$

$$\overline{A}_{\parallel}^{NP} = -4i \sqrt{2} f_{\phi}^{T} m_{B}^{2} (\tilde{a}_{23} + \tilde{a}_{25}) f_{1} T_{1} (m_{\phi}^{2}) \frac{p_{3}}{m_{K_{2}^{*}}} \sqrt{\frac{1}{2}},$$

$$\overline{A}_{\parallel}^{NP} = -4i \sqrt{2} f_{\phi}^{T} m_{B}^{2} (\tilde{a}_{23} + \tilde{a}_{25}) f_{1} T_{1} (m_{\phi}^{2}) \frac{p_{3}}{m_{K_{2}^{*}}} \sqrt{\frac{1}{2}},$$

$$\overline{A}_{\parallel}^{NP} = -4i \sqrt{2} f_{\phi}^{T} m_{B}^{2} (\tilde{a$$

$$B \to K^* \phi$$

$$\begin{split} \overline{A}_0^{NP} &= +4i f_\phi^T m_B^2 \left[\tilde{a}_{23} - \tilde{a}_{25} \right] \left[h_2 T_2(m_\phi^2) - h_3 T_3(m_\phi^2) \right] \\ \overline{A}_{\parallel}^{NP} &= -4i \sqrt{2} f_\phi^T m_B^2 (\tilde{a}_{23} - \tilde{a}_{25}) f_2 T_2(m_\phi^2), \\ \overline{A}_{\perp}^{NP} &= -4i \sqrt{2} f_\phi^T m_B^2 (\tilde{a}_{23} + \tilde{a}_{25}) f_1 T_1(m_\phi^2), \end{split}$$

Conclusions

Possible solutions for polarization in $B \rightarrow VV decays$:

- ♦ In SM, we need large constructive annihilation corrections to the transverse amplitudes via the $O_6=-2\bar{d}(1-\gamma_5)b~\bar{s}(1+\gamma_5)d$
 - the annihilation corrections are only significant for penguin dominant processes $\phi K^*, \rho K^*, \ldots$

New physics solutions:

the only candidates are the tensor operators (Pure $(S \pm P)(S \pm P)$ operators are unlikely)

Further information $(b \rightarrow \overline{s} s)$ can be extracted from

$$B \rightarrow \phi K_2^*, \omega K_2^*$$

and some other modes involving the tensor meson

(pseudo-)scalar-type operators

$$O_{15} = \overline{s}(1+\gamma^5)b\ \overline{s}(1+\gamma^5)s, \qquad O_{16} = \overline{s}_{\alpha}(1+\gamma^5)b_{\beta}\ \overline{s}_{\beta}(1+\gamma^5)s_{\alpha},$$

$$O_{17} = \overline{s}(1-\gamma^5)b\ \overline{s}(1-\gamma^5)s, \qquad O_{18} = \overline{s}_{\alpha}(1-\gamma^5)b_{\beta}s\ \overline{s}_{\beta}(1-\gamma^5)s_{\alpha},$$

tensor-type operators

$$O_{23} = \overline{s}\sigma^{\mu\nu}(1+\gamma^5)b\ \overline{s}\sigma_{\mu\nu}(1+\gamma^5)s, \qquad O_{24} = \overline{s}_{\alpha}\sigma^{\mu\nu}(1+\gamma^5)b_{\beta}\ \overline{s}_{\beta}\sigma_{\mu\nu}(1+\gamma^5)s_{\alpha},$$

$$O_{25} = \overline{s}\sigma^{\mu\nu}(1-\gamma^5)b\ \overline{s}\sigma_{\mu\nu}(1-\gamma^5)s, \qquad O_{26} = \overline{s}_{\alpha}\sigma^{\mu\nu}(1-\gamma^5)b_{\beta}\ \overline{s}_{\beta}\sigma_{\mu\nu}(1-\gamma^5)s_{\alpha},$$

By Fierz transformation

$$O_{15} = \frac{1}{12}O_{23} - \frac{1}{6}O_{24}, \qquad O_{16} = \frac{1}{12}O_{24} - \frac{1}{6}O_{23}$$
 $O_{17} = \frac{1}{12}O_{25} - \frac{1}{6}O_{26}, \qquad O_{18} = \frac{1}{12}O_{26} - \frac{1}{6}O_{25}$

Can only (pseudo-)scalar-type operators explain the data?

Answer: NO

In the minimal supersymmetric standard model (MSSM), such scalar/pseudoscalar operators can be induced by the penguin diagrams of neutral-Higgs bosons.

A combined analysis of the decays $B \to K \eta^{(l)}$, ϕK^* decays and to be consistent with the data for $B_s \to \mu^+ \mu^-$ shows that the NP effects only due to (pseudo-)scalar-type operators is much smaller in $B \to K^* \phi$ modes.

PRD77, 035013 (2008), H. Hatanaka, KCY

Penguin-dominated $B \rightarrow TP$

			${\mathcal B}$	
Decay	QCDF	Kim-Lim-Oh [20]	Munoz-Quintero [21]	Experiment
$B^- \to \bar{K}_2^* (1430)^0 \pi^-$	$3.1^{+8.3}_{-3.1}$			$5.6^{+2.2}_{-1.4}$
$B^- \to K_2^* (1430)^- \pi^0$	$2.2^{+4.7}_{-1.9}$	0.090	0.15	
$\bar{B}^0 \to K_2^*(1430)^- \pi^+$	$3.3^{+8.5}_{-3.2}$			< 6.3
$\bar{B}^0 \to \bar{K}_2^*(1430)^0 \pi^0$	$1.2^{+4.3}_{-1.3}$	0.084	0.13	<4.0
$B^- \longrightarrow a_2(1320)^0 K^-$	$4.9^{+8.4}_{-4.2}$	0.311	0.39	<45
$B^- \longrightarrow a_2(1320)^- \bar{K}^0$	$8.4^{+16.1}_{-7.2}$	0.011	0.015	
$\bar{B}^0 \to a_2(1320)^+ K^-$	$9.7^{+17.2}_{-8.1}$	0.584	0.73	
$\bar{B}^0 \longrightarrow a_2(1320)^0 \bar{K}^0$	$4.2^{+8.3}_{-3.5}$	0.005	0.014	
$B^- \longrightarrow f_2(1270) K^-$	$3.8^{+7.8}_{-3.0}$	0.344		$1.06^{+0.28}_{-0.29}$
$\bar{B}^0 \longrightarrow f_2(1270)\bar{K}^0$	$3.4^{+8.5}_{-3.1}$	0.005		$2.7^{+1.3}_{-1.2}$
$B^- \longrightarrow f_2'(1525)K^-$	$4.0^{+7.4}_{-3.6}$	0.004		<7.7
$\bar{B}^0 \longrightarrow f_2'(1525)\bar{K}^0$	$3.8^{+7.3}_{-3.5}$	7×10^{-5}		
$B^- \to K_2^*(1430)^- \eta$	$6.8^{+13.5}_{-8.7}$	0.031	1.19	9.1 ± 3.0
$B^- \to K_2^* (1430)^- \eta'$	$12.1^{+20.7}_{-12.1}$	1.405	2.70	$28.0^{+5.3}_{-5.0}$
$\bar{B}^0 \longrightarrow \bar{K}_2^*(1430)^0 \eta$	$6.6^{+13.5}_{-8.7}$	0.029	1.09	9.6 ± 2.1
$\bar{B}^0 \to \bar{K}_2^* (1430)^0 \eta'$	$12.4^{+21.3}_{-12.4}$	1.304	2.46	$13.7^{+3.2}_{-3.1}$

branching fractions (in units of 10^{-6})

$B^- \rightarrow \underline{K_2}^{*0} \pi^-$ vanishes in naïve factorization, while its BR is measured to be ~ 5.6×10⁻⁶

⇒ importance of nonfactorizble effects

■ Penguin annihilation is needed in QCDF to account for rates & CP asymmetries

$$X_A \equiv \int_0^1 \frac{dy}{y} = \ln \frac{m_B}{\Lambda_h} \left(1 + \rho_A e^{i\varphi_A} \right)$$

$$\begin{array}{ll} \rho_A^{\ TP} = 0.83, & \varphi_A^{\ TP} = -70^o \\ \rho_A^{\ PT} = 0.75, & \varphi_A^{\ PT} = -30^o & \text{for B} \rightarrow PP \end{array}$$