Tests of Lorentz and CPT violation with Neutrinos

Teppei Katori
Massachusetts Institute of Technology
ICHEP2012, Melbourne, Australia, July 10, 2012

Tests of Lorentz and CPT violation with Neutrinos

Tests of Lorentz and CPT violation with Neutrinos

Outline

- 1. Spontaneous Lorentz symmetry breaking
- 2. What is Lorentz and CPT violation?
- 3. Test for Lorentz violation with neutrinos
- 4. Conclusion

Teppei Katori
Massachusetts Institute of Technology
ICHEP2012, Melbourne, Australia, July 10, 2012

2. What is Lorentz and CPT violation?

3. Test for Lorentz violation with Neutrinos

4. Conclusion

Every fundamental symmetry needs to be tested, including Lorentz symmetry.

After the recognition of the theoretical processes that create Lorentz violation, testing Lorentz invariance became very exciting.

Lorentz and CPT violation has been shown to occur in Planck-scale theories, including:

- string theory
- noncommutative field theory
- quantum loop gravity
- extra dimensions
- etc

However, it is very difficult to build a self-consistent theory with Lorentz violation...

Every fundamental symmetry needs to be tested, including Lorentz symmetry.

After the recognition of the theoretical processes that create Lorentz violation, testing Lorentz invariance became very exciting.

Lorentz and CPT violation has been shown to occur in Planck-scale theories, including:

- string theory
- noncommutative field theory
- quantum loop gravity
- extra dimensions
- etc

However, it is very difficult to build a self-consistent theory with Lorentz violation...

Spontaneous
Symmetry Breaking
(SSB)!

Y. Nambu (Nobel Prize winner 2008), picture taken from CPT04 at Bloomington, IN

vacuum Lagrangian for fermion
$$L = i \overline{Y} g_m \P^m Y$$

e.g.) SSB of scalar field in Standard Model (SM)

- If the scalar field has Mexican hat potential

$$L = \frac{1}{2} (\P_{m} j)^{2} - \frac{1}{2} m^{2} (j^{*} j) - \frac{1}{4} / (j^{*} j)^{2}$$

$$M(j) = m^{2} < 0$$

vacuum Lagrangian for fermion
$$L = i \overline{Y} g_m \P^m Y - m \overline{Y} Y$$

e.g.) SSB of scalar field in Standard Model (SM)

- If the scalar field has Mexican hat potential

$$L = \frac{1}{2} (\P_{m} j)^{2} - \frac{1}{2} m^{2} (j^{*} j) - \frac{1}{4} / (j^{*} j)^{2}$$

$$M(j) = m^{2} < 0$$

Particle acquires mass term!

vacuum Lagrangian for fermion
$$L = i \nabla g_m \P^m Y - m \nabla Y$$

e.g.) SSB of scalar field in Standard Model (SM)

- If the scalar field has Mexican hat potential

$$L = \frac{1}{2} (\P_{m} j)^{2} - \frac{1}{2} m^{2} (j^{*} j) - \frac{1}{4} / (j^{*} j)^{2}$$

$$M(j) = m^2 < 0$$

e.g.) SLSB in string field theory

- There are many Lorentz vector fields
- If any of vector field has Mexican hat potential

$$M(a^m) = m^2 < 0$$

vacuum Lagrangian for fermion
$$L = i \nabla g_m \P^m Y - m \nabla Y + \nabla g_m a^m Y$$

e.g.) SSB of scalar field in Standard Model (SM)

- If the scalar field has Mexican hat potential

$$L = \frac{1}{2} (\P_{m} j)^{2} - \frac{1}{2} m^{2} (j^{*} j) - \frac{1}{4} / (j^{*} j)^{2}$$

$$M(j) = m^2 < 0$$

e.g.) SLSB in string field theory

- There are many Lorentz vector fields
- If any of vector field has Mexican hat potential

$$M(a^m) = m^2 < 0$$

Lorentz symmetry is spontaneously broken!

1. Test of Lorentz violation

Test of Lorentz violation is to find the coupling of these background fields and ordinary fields (electrons, muons, neutrinos, etc); then the physical quantities may depend on the

rotation of the earth (sidereal time dependence).

vacuum Lagrangian for fermion

$$L = i Y g_m \P^m Y - mYY + Y g_m a^m Y + Y g_m c^{mn} \P_n Y \Box$$

solar time: 24h 00m 00.0s

sidereal time: 23h 56m 04.1s (Earth rotation period)

background fields of the universe

PM 6:00

ori, MIT

- 1. Spontaneous Lorentz symmetry breaking
- 2. What is Lorentz and CPT violation?
- 3. Test for Lorentz violation with neutrinos
- 4. Conclusion

$$\forall (x)g_m a^m \forall (x)$$

$$\forall (x)g_m a^m \forall (x)$$

Under the particle Lorentz transformation:

$$U\Upsilon(x)g_ma^m\Upsilon(x)U^{-1}$$

Under the particle Lorentz transformation:

$$\overline{\Psi}(x)\gamma_{\mu}a^{\mu}\Psi(x) \rightarrow U[\overline{\Psi}(x)\gamma_{\mu}a^{\mu}\Psi(x)]U^{-1}$$

$$\neq \overline{\Psi}(\Lambda x)\gamma_{\mu}a^{\mu}\Psi(\Lambda x)$$

Lorentz violation is observable when a particle is moving in the fixed coordinate space

Under the particle Lorentz transformation:

$$\overline{\Psi}(x)\gamma_{\mu}a^{\mu}\Psi(x) \rightarrow U[\overline{\Psi}(x)\gamma_{\mu}a^{\mu}\Psi(x)]U^{-1}$$

$$\neq \overline{\Psi}(\Lambda x)\gamma_{\mu}a^{\mu}\Psi(\Lambda x)$$

Lorentz violation is observable when a particle is moving in the fixed coordinate space

Under the observer Lorentz transformation:

$$\forall (x)g_m a^m \forall (x)$$

Under the particle Lorentz transformation:

$$\overline{\Psi}(x)\gamma_{\mu}a^{\mu}\Psi(x) \rightarrow U[\overline{\Psi}(x)\gamma_{\mu}a^{\mu}\Psi(x)]U^{-1}$$

$$\neq \overline{\Psi}(\Lambda x)\gamma_{\mu}a^{\mu}\Psi(\Lambda x)$$

Lorentz violation is observable when a particle is moving in the fixed coordinate space

$$\nabla(\mathbf{x})g_{\mathbf{m}}\mathbf{a}^{\mathbf{m}}\mathbf{Y}(\mathbf{x})$$
$$\mathbf{x} \to \mathbf{\Lambda}^{-1}\mathbf{x}$$

Under the particle Lorentz transformation:

$$\overline{\Psi}(x)\gamma_{\mu}a^{\mu}\Psi(x) \rightarrow U[\overline{\Psi}(x)\gamma_{\mu}a^{\mu}\Psi(x)]U^{-1}$$

$$\neq \overline{\Psi}(\Lambda x)\gamma_{\mu}a^{\mu}\Psi(\Lambda x)$$

Lorentz violation is observable when a particle is moving in the fixed coordinate space

Under the observer Lorentz transformation:

$$\overline{\Psi}(x)\gamma_{\mu}a^{\mu}\Psi(x) \xrightarrow{\Lambda^{-1}} \overline{\Psi}(\Lambda^{-1}x)\gamma_{\mu}a^{\mu}\Psi(\Lambda^{-1}x)$$

Lorentz violation cannot be generated by observers motion (coordinate transformation is unbroken)

all observers agree for all observations

07/10/12

- 1. Spontaneous Lorentz symmetry breaking
- 2. What is Lorentz and CPT violation?
- 3. Test for Lorentz violation with neutrinos
- 4. Conclusion

Lorentz violation is realized as a coupling of particle fields and background fields, so the basic strategy to find Lorentz violation is:

- (1) choose the coordinate system
- (2) write down the Lagrangian, including Lorentz-violating terms under the formalism
- (3) write down the observables using this Lagrangian

Lorentz violation is realized as a coupling of particle fields and background fields, so the basic strategy to find Lorentz violation is:

- (1) choose the coordinate system
- (2) write down the Lagrangian, including Lorentz-violating terms under the formalism
- (3) write down the observables using this Lagrangian
- Neutrino beamline is described in Sun-centred coordinates

MiniBooNE beamline

Lorentz violation is realized as a coupling of particle fields and background fields, so the basic strategy to find Lorentz violation is:

- (1) choose the coordinate system
- (2) write down the Lagrangian, including Lorentz-violating terms under the formalism
- (3) write down the observables using this Lagrangian

Standard Model Extension (SME) is the standard formalism for the general search for Lorentz violation. SME is a minimum extension of QFT with Particle Lorentz violation

SME Lagrangian in neutrino sector

$$L = \frac{1}{2}i\overline{y}_{A}G_{AB}^{n}\P_{n}y_{B} - M_{AB}\overline{y}_{A}y_{B} + h.c.$$

SME coefficients

$$G_{AB}^{n} = g^{n} d_{AB} + c_{AB}^{mn} g_{m} + d_{AB}^{mn} g_{m} g_{5} + e_{AB}^{n} + i f_{AB}^{n} g_{5} + \frac{1}{2} g_{AB}^{mn} S_{m} \cdots$$

$$M_{AB} = m_{AB} + i m_{5AB} g_5 + a_{AB}^m g_m + b_{AB}^m g_5 g_m + \frac{1}{2} H_{AB}^{mn} s_{mn} \cdots$$

Lorentz violation is realized as a coupling of particle fields and background fields, so the basic strategy to find Lorentz violation is:

- (1) choose the coordinate system
- (2) write down the Lagrangian, including Lorentz-violating terms under the formalism
- (3) write down the observables using this Lagrangian

Various physics are predicted under SME, but among them, the smoking gun of Lorentz violation is the sidereal time dependence of the observables

solar time: 24h 00m 00.0s sidereal time: 23h 56m 04.1s

 $\begin{array}{c} \text{sidereal frequency} \ \, \mathcal{W}_{\oplus} = \frac{2 \rho}{23 h 56 m 4.1 s} \\ \text{sidereal time} \qquad T_{\oplus} \end{array}$

Lorentz-violating neutrino oscillation probability for short-baseline experiments

$$P_{n_{m} \rightarrow n_{e}} = \left(\frac{L}{\hbar c}\right)^{2} \left| (C)_{em} + (A_{s})_{em} \sin W_{\oplus} T_{\oplus} + (A_{c})_{em} \cos W_{\oplus} T_{\oplus} + (B_{s})_{em} \sin 2W_{\oplus} T_{\oplus} + (B_{c})_{em} \cos 2W_{\oplus} T_{\oplus} \right|^{2}$$

Lorentz violation is realized as a coupling of particle fields and background fields, so the basic strategy to find Lorentz violation is:

- (1) choose the coordinate system
- (2) write down the Lagrangian, including Lorentz-violating terms under the formalism
- (3) write down the observables using this Lagrangian

Various physics are predicted under SME, but among them, the smoking gun of Lorentz violation is the sidereal time dependence of the observables

solar time: 24h 00m 00.0s sidereal time: 23h 56m 04.1s

sidereal frequency $W_{\oplus} = \frac{2p}{23h56m4.1s}$ sidereal time T_{\odot}

Lorentz-violating neutrino oscillation probability for short-baseline experiments

time independent amplitude sidereal time dependent amplitude

$$P_{n_{m}\rightarrow n_{e}} = \left(\frac{L}{\hbar c}\right)^{2} \left(C)_{em} + \left(A_{s}\right)_{em} \sin w_{\oplus} T_{\oplus} + \left(A_{c}\right)_{em} \cos w_{\oplus} T_{\oplus} + \left(B_{s}\right)_{em} \sin 2w_{\oplus} T_{\oplus} + \left(B_{c}\right)_{em} \cos 2w_{\oplus} T_{\oplus}\right|^{2}$$

Sidereal variation analysis for short baseline neutrino oscillation is 5-parameter fitting problem

3. LSND experiment

LSND is a short-baseline neutrino oscillation experiment at Los Alamos.

$$\overline{V}_{\mu} \xrightarrow{oscillation} \overline{V}_{e} + p \xrightarrow{oscillation} e^{+} + n$$

$$n+p \rightarrow d+\gamma$$

LSND saw the 3.8 σ excess of electron antineutrinos from muon antineutrino beam; since this excess is not understood by neutrino Standard Model, it might be new physics

3. LSND experiment

LSND is a short-baseline neutrino oscillation experiment at Los Alamos.

$$\overline{V}_{\mu} \xrightarrow{oscillation} \overline{V}_{e} + p \xrightarrow{oscillation} e^{+} + n$$

$$n+p \rightarrow d+\gamma$$

LSND saw the 3.8 σ excess of electron antineutrinos from muon antineutrino beam; since this excess is not understood by neutrino Standard Model, it might be new physics

Data is consistent with flat solution, but sidereal time solution is not excluded.

Small Lorentz violation could be the solution of LSND excess

3. Tandem Model

$$(h_{\rm eff}^{\nu})_{ab} \approx E \delta_{ab} + \frac{(m^2)_{ab}}{2E} + (a_L)_{ab} - \frac{4}{3} (c_L)_{ab} E.$$

Small Lorentz violation could be the solution of LSND excess. But can such solution be allowed by other experiments?

→ It is possible to construct a phenomenological neutrino oscillation model, based on Lorentz violation, using only 3 free parameters (tandem model).

Tandem model can reproduce:

- solar neutrino oscillation
- atmospheric neutrino oscillation
- reactor neutrino oscillation
- LSND neutrino oscillation

Tandem model also predicts small excess at the low energy region for MiniBooNE

Recent development of Lorentz violating neutrino oscillation models, see for example, Diaz and Kostelecký, PRD85(2012)016013

3. MiniBooNE experiment

MiniBooNE is a short-baseline neutrino oscillation experiment at Fermilab.

$$\Pi_{m} \xrightarrow{oscillation} \Pi_{e} + n \rightarrow e^{-} + p$$

$$\overline{\Pi}_{m} \xrightarrow{oscillation} \overline{\Pi}_{e} + p \rightarrow e^{+} + n$$

Neutrino mode analysis: MiniBooNE saw the 3.0σ excess at low energy region Antineutrino mode analysis: MiniBooNE saw the 1.4σ excess at low and high energy region

(however MiniBooNE low energy excesses are much bigger than tandem model prediction)

3. MiniBooNE experiment

MiniBooNE is a short-baseline neutrino oscillation experiment at Fermilab.

$$\Pi_{m} \xrightarrow{\text{oscillation}} \Pi_{e} + n \to e^{-} + p$$

$$\overline{\Pi}_{m} \xrightarrow{\text{oscillation}} \overline{\Pi}_{e} + p \to e^{+} + n$$

Neutrino mode analysis: MiniBooNE saw the 3.0σ excess at low energy region Antineutrino mode analysis: MiniBooNE saw the 1.4σ excess at low and high energy region

Electron neutrino candidate data prefer sidereal time independent solution (flat)

Electron antineutrino candidate data prefer sidereal time dependent solution, but statistical significance is marginal

We find no evidence of Lorentz violation

07/10/12

3. MiniBooNE experiment

MiniBooNE is a short-baseline neutrino oscillation experiment at Fermilab.

$$\Pi_{m} \xrightarrow{\text{oscillation}} \Pi_{e} + n \to e^{-} + p$$

$$\overline{\Pi}_{m} \xrightarrow{\text{oscillation}} \overline{\Pi}_{e} + p \to e^{+} + n$$

Neutrino mode analysis: MiniBooNE saw the 3.0σ excess at low energy region Antineutrino mode analysis: MiniBooNE saw the 1.4σ excess at low and high energy region.

Since we find no evidence of Lorentz violation, we set limits on the SME coefficients.

These limits exclude SME values to explain LSND data, therefore there is no simple Lorentz violation motivated scenario to accommodate LSND and MiniBooNE results simultaneously

Coefficient	$e\mu$ (ν mode low energy region)	$e\mu$ ($\bar{\nu}$ mode combined region)
$\operatorname{Re}(a_L)^T$ or $\operatorname{Im}(a_L)^T$	$4.2 \times 10^{-20} \text{ GeV}$	$2.6 \times 10^{-20} \text{ GeV}$
$\operatorname{Re}(a_L)^X$ or $\operatorname{Im}(a_L)^X$	$6.0 \times 10^{-20} \text{ GeV}$	$5.6 \times 10^{-20} \text{ GeV}$
$\operatorname{Re}(a_L)^Y$ or $\operatorname{Im}(a_L)^Y$	$5.0 \times 10^{-20} \text{ GeV}$	$5.9 \times 10^{-20} \text{ GeV}$
$\operatorname{Re}(a_L)^Z$ or $\operatorname{Im}(a_L)^Z$	$5.6 \times 10^{-20} \text{ GeV}$	$3.5 \times 10^{-20} \text{ GeV}$
$\operatorname{Re}(c_L)^{XY}$ or $\operatorname{Im}(c_L)^{XY}$	_	_
$\operatorname{Re}(c_L)^{XZ}$ or $\operatorname{Im}(c_L)^{XZ}$	1.1×10^{-19}	6.2×10^{-20}
$\operatorname{Re}(c_L)^{YZ}$ or $\operatorname{Im}(c_L)^{YZ}$	9.2×10^{-20}	6.5×10^{-20}
$\operatorname{Re}(c_L)^{XX}$ or $\operatorname{Im}(c_L)^{XX}$	_	_
$\operatorname{Re}(c_L)^{YY}$ or $\operatorname{Im}(c_L)^{YY}$	_	_
$\operatorname{Re}(c_L)^{ZZ}$ or $\operatorname{Im}(c_L)^{ZZ}$	3.4×10^{-19}	1.3×10^{-19}
$\operatorname{Re}(c_L)^{TT}$ or $\operatorname{Im}(c_L)^{TT}$	9.6×10^{-20}	3.6×10^{-20}
$\operatorname{Re}(c_L)^{TX}$ or $\operatorname{Im}(c_L)^{TX}$	8.4×10^{-20}	4.6×10^{-20}
$\operatorname{Re}(c_L)^{TY}$ or $\operatorname{Im}(c_L)^{TY}$	6.9×10^{-20}	4.9×10^{-20}
$\operatorname{Re}(c_L)^{TZ}$ or $\operatorname{Im}(c_L)^{TZ}$	7.8×10^{-20}	2.9×10^{-20}

3. Double Chooz experiment

So far, we have set limits on

1. $v_e \leftrightarrow v_\mu$ channel: LSND, MiniBooNE, MINOS (<10⁻²⁰ GeV)

2. $v_{\mu} \leftrightarrow v_{\tau}$ channel: MINOS, IceCube (<10⁻²³ GeV)

The last untested channel is $v_e \leftrightarrow v_\tau$

It is possible to limit $v_e \leftrightarrow v_\tau$ channel from reactor v_e disappearance experiment

$$P(v_e \leftrightarrow v_e) = 1 - P(v_e \leftrightarrow v_{\mu}) - P(v_e \leftrightarrow v_{\tau}) \sim 1 - P(v_e \leftrightarrow v_{\tau})$$

Double Chooz observed the 3.1σ disappearance signal of electron antineutrinos from the reactor

3. Double Chooz experiment

So far, we have set limits on

- 1. $v_e \leftrightarrow v_\mu$ channel: LSND, MiniBooNE, MINOS (<10⁻²⁰ GeV)
- 2. $\nu_{\mu} \leftrightarrow \nu_{\tau}$ channel: MINOS, IceCube (<10⁻²³ GeV)

The last untested channel is $v_e \leftrightarrow v_{\tau}$

It is possible to limit $v_e \leftrightarrow v_\tau$ channel from reactor v_e disappearance experiment

 $P(v_e \leftrightarrow v_e) = 1 - P(v_e \leftrightarrow v_u) - P(v_e \leftrightarrow v_\tau) \sim 1 - P(v_e \leftrightarrow v_\tau)$

Double Chooz observed the 3.1σ disappearance signal of electron antineutrinos from the reactor

Preliminary result shows small disappearance signal prefers sidereal time independent solution (flat)

We will be able to set limits in the $e-\tau$ sector for the first time; $v_e \leftrightarrow v_\tau$ (<10⁻²¹ GeV)

Conclusion

Lorentz and CPT violation has been shown to occur in Planck-scale physics.

There is a world wide effort to test Lorentz violation with various state-of-the-art technologies.

LSND and MiniBooNE data suggest Lorentz violation is an interesting solution to neutrino oscillation.

MiniBooNE antineutrino mode data prefer sidereal time dependent solution, although statistical significance is not high. Limits from MiniBooNE exclude simple Lorentz violation motivated scenario for LSND.

MiniBooNE, LSND, MINOS, IceCube, and Double Chooz set stringent limits on Lorentz violation in neutrino sector in terrestrial level

Backup

3. MiniBooNE oscillation analysis results

Neutrino mode low energy excess MiniBooNE see the excess in low energy region.

MiniBooNE low E v_e excess Data v_e from μ v_e from κ^0 r^0 misid $\Delta \to N\gamma$ dirt other Total Background low energy high energy

Antineutrino mode excess MiniBooNE see the excess in combined region.

These excesses are not predicted by neutrino Standard Model (vSM). Oscillation candidate events may have sidereal time dependence.

2. What is CPT violation?

CPT symmetry is the invariance under CPT transformation

$$L \xrightarrow{CPT} \Theta L \Theta^{-1} = L' = L, \quad \Theta = CPT$$

CPT is the perfect symmetry of the Standard Model, due to CPT theorem

2. What is CPT violation?

CPT symmetry is the invariance under CPT transformation

$$L \xrightarrow{CPT} \Theta L \Theta^{-1} = L' = L, \quad \Theta = CPT$$

CPT is the perfect symmetry of the Standard Model, due to CPT theorem

CPT-odd Lorentz violating coefficients (odd number Lorentz indices, ex., a^{μ} , $g^{\lambda\mu\nu}$) CPT-even Lorentz violating coefficients (even number Lorentz indices, ex., $c^{\mu\nu}$, $\kappa^{\alpha\beta\mu\nu}$)

2. Modern tests of Lorentz violation

The last meeting of Lorentz and CPT violation was in summer 2010.

Next meeting will be in summer 2013

http://www.physics.indiana.edu/~kostelec/faq.html

MEETING LINKS

Meeting Home
Registration
Program
Proceedings
Travel
Accommodations

LOCAL LINKS

IU Physics
IU Astronomy
IU Bloomington
Bloomington area

Fifth Meeting on

CPT AND LORENTZ SYMMETRY

June 28-July 2, 2010

Indiana University, Bloomington

The Fifth Meeting on CPT and Lorentz Symmetry will be held in the Physics Department, Indiana University in Bloomington, Indiana, U.S.A. on June 28-July 2, 2010. The meeting will focus on tests of these fundamental symmetries and on related theoretical issues, including scenarios for possible violations.

Topics include:

- · searches for CPT and Lorentz violations involving
 - o birefringence and dispersion from cosmological sources
 - clock-comparison measurements
 - o CMB polarization
 - collider experiments
 - o electromagnetic resonant cavities
 - o equivalence principle
 - o gauge and Higgs particles
 - o high-energy astrophysical observations
 - o laboratory and gravimetric tests of gravity

2. Modern tests of Lorentz violation

http://www.physics.indiana.edu/~kostelec/faq.html

MEETING LINKS

Meeting Home
Registration
Program
Proceedings
Travel
Accommodations

LOCAL LINKS

IU Physics IU Astronomy IU 07/10/12 gton Bloomington area

Topics:

- * searches for CPT and Lorentz violations involving birefringence and dispersion from cosmological sources clock-comparison measurements CMB polarization collider experiments
 electromagnetic resonant cavities equivalence principle a University, Bloomington gauge and Higgs particles high-energy astrophysical observations laboratory and gravimetric tests of gravity matter interferometry neutrino oscillations oscillations and decays of K, B, D mesons particle-antiparticle comparisons post-newtonian gravity in the solar system and beyond second- and third-generation particles space-based missions involving spectroscopy of hydrogen and antihydrogen spin-polarized matter * theoretical studies of CPT and Lorentz violation involving
 - physical effects at the level of the Standard Model, General Relativity, and beyond origins and mechanisms for violations classical and quantum issues in field theory, particle physics, gravity, and strings

Atomic Interferometer $(a,c)^{n,p,e} < 10^{-6}$ Steven Chu

of Lorentz v

a.edu/~kostelec/fa

oics:

CERN Antiproton Decelerator $(M_p - \overline{M_p})/M_p < 10^{-8}$

PRL102(2009)170402

Tevatron and LEP

 $-5.8 \times 10^{-12} < \kappa_{tr} - 4/3 c_{e}^{00} < 1.2 \times 10^{-11}$

sonant cavities ple

GRB vacuum birefringence $\kappa_{\rm e+}$, $\kappa_{\rm o-}$ <10⁻³⁷

PRL97(2006)140401

ources

Double gas maser b_n(rotation)<10⁻³³GeV b_n(boost)<10⁻²⁷GeV

MEETING LINKS

PRL106(2011)1

Meeting Home Registration Program **Proceedings**

neutrino oscillations oscillations and decays

particle-antiparticle comp

post-newtonian gravity

Cryogenic optical resonator $\Delta c/c < 10^{-16}$

LSND

PRD72(2005)076004

MINOS ND

PRL101(2008)151601

MiniBooNE

PRD82(2010)112003 arXiv:1109,3480

2. Neutrino oscillations, natural interferometers

Neutrino oscillation is an interference experiment (e.g. double slit experiment)

For double slit experiment, if path v_1 and path v_2 have different lengths, they have different phase rotations and it causes interference.

In terms of neutrinos, if Hamiltonian eigenstates v_1 and v_2 are different, that can be the source of neutrino oscillations.

2. Lorentz violation with neutrino oscillation

Neutrino oscillation is an interference experiment (e.g. double slit experiment)

If 2 neutrino Hamiltonian eigenstates, v_1 and v_2 , have different phase rotations, they cause quantum interference.

2. Lorentz violation with neutrino oscillation

Neutrino oscillation is an interference experiment (e.g. double slit experiment)

If 2 neutrino Hamiltonian eigenstates, v_1 and v_2 , have different phase rotations, they cause quantum interference.

If v_1 and v_2 have different couplings with Lorentz-violating field, that can be the source of neutrino oscillations.

2. Lorentz violation with neutrino oscillation

Neutrino oscillation is an interference experiment (e.g. double slit experiment)

If 2 neutrino Hamiltonian eigenstates, v_1 and v_2 , have different phase rotations, they cause quantum interference.

If v_1 and v_2 have different couplings with Lorentz-violating field, that can be the source of neutrino oscillations.

Interference fringe (oscillation pattern) depends on the sidereal motion. The measured scale of neutrino eigenvalue difference is comparable the target scale of Lorentz violation (<10⁻¹⁹GeV).

Lorentz violation is realized as a coupling of particle fields and background fields, so the basic strategy to find Lorentz violation is:

- (1) fix the coordinate system
- (2) write down the Lagrangian, including Lorentz-violating terms under the formalism
- (3) write down the observables using this Lagrangian

Standard Model Extension (SME) is the standard formalism for the general search for Lorentz violation. SME is a minimum extension of QFT with Particle Lorentz violation

