Semileptonic B_(s) Decays IUPAP Young Scientist Award

Thank you to my colleagues who worked with me on many of the measurements in this talk, particularly from **Belle, LHCb, Heavy Flavour Averaging Group**

About me

ICHEP2012 Melbourne

$\left|V_{cb}\right|$, $\left|V_{ub}\right|$ and the Unitarity Triangle

- New physics searches in the flavour sector require precise and overconstraining measurements of the sides and angles of the Unitarity Triangle.
- Must measure CKM matrix elements, fundamental parameters of the \overline{B} Standard Model and cannot be predicted V_{uh}, V_{ch}
- $O(V_{cb})$ and $|V_{ub}|$ have a special role in the UT
 - Accessible from Tree Level processes.
 - Free of New Physics in loops

u, c $\Gamma_{x} \equiv \Gamma(b \rightarrow x \ell \nu) \propto |V_{xb}|^{2}$ $v \rightarrow v$ $v \rightarrow v$

 0.113 ± 0.21

3

Semileptonic *B* decays, IUPAP Prize, ICHEP 2012

Phillip URQUIJO

V_{ub}/V_{cb}

inclusive

18%

$\left|V_{cb}\right|, \left|V_{ub}\right|$ and the Unitarity Triangle

- New physics searches in the flavour sector require precise and overconstraining measurements of the sides and angles of the Unitarity Triangle.
- Must measure CKM matrix elements, fundamental parameters of the \overline{B} Standard Model and cannot be predicted $V_{\mu h}, V_{ch}$
- $|V_{cb}|$ and $|V_{ub}|$ have a special role in the UT
 - Accessible from Tree Level processes.
 - Free of New Physics in loops

 \mathcal{U}, \mathcal{C} $\Gamma_{x} \equiv \Gamma(b \to x \ell \nu) \propto |V_{xb}|^{2}$ V_{ub}, V_{cb} \mathcal{U}, \mathcal{C} 2012 PDG Prec. 0.214 ± 0.006 V_{td}/V_{ts} 0.5% (21.4 ± 0.8) 3.7% Φ₁ V_{ub}/V_{cb} 0.097 ± 0.007 7.0% inclusive

Semileptonic *B* decays, IUPAP Prize, ICHEP 2012

Phillip URQUIJO

4

Semileptonic B decays

tree level, short distance:

b → c e v

Decay properties depend directly on $|V_{cb}| \& |V_{ub}|$ and m_b in the perturbative regime (α_s^{n}).

Semileptonic B decays

tree level, short distance:

+ long distance:

Decay properties depend directly on $|V_{cb}| \& |V_{ub}|$ and m_b in the perturbative regime (α_s^{n}).

But quarks are bound by soft gluons: non-perturbative long distance interactions of *b* quark with the light quark in the *B* meson.

Semileptonic B decays

tree level, short distance:

+ long distance:

Decay properties depend directly on $|V_{cb}| \& |V_{ub}|$ and m_b in the perturbative regime (α_s^{n}) .

But quarks are bound by soft gluons: non-perturbative

long distance interactions of *b* quark with the light quark in the *B* meson.

Heavy Quark Effective Theory: Precise tools to describe dynamics of the *b* quark

Departure from the heavy quark symmetry can be expressed as $(\Lambda_{QCD}/m_Q)^n$ corrections

Inclusive versus Exclusive

Two **Complementary** approaches using **different** theoretical tools, and **different** experimental signatures. →Crucial independent consistency check.

Vcb

Measure *moments* integrated over large phase space to allow assumption of *quark-hadron* duality

$|V_{cb}|$ from Inclusive $B \rightarrow X_c l^+ v$

λ₁ and *m_b*, and thus |*V_{cb}*| from "moments" in semileptonic decays

$$M_{x}^{n} \rangle|_{E_{\ell} > E_{0}} = \tau_{B} \int_{E_{0}} M_{x}^{n} d\Gamma = f(E_{0}, m_{b}, m_{c}, \mu_{\pi}^{2}, \mu_{G}^{2}, \rho_{D}^{3}, \rho_{LS}^{3})$$

Cut-off

quark masses Non-perturbative parameters

Moments can be calculated for cut-off in E_I

Need high resolution access to *B* rest frame, unfolded observables:

Hadronic invariant mass

Lepton momentum

• Use hadronic tag $B_{tag} \rightarrow D^{(*)}Y$ (Y= $n\pi$, $m\pi^0$, pK_s ,qK), to fully constrain the signal side *B* properties:

→tag - charge - momentum

New, improved hadronic tag method introduced by Belle in 2012 (see Y. Yook)

Used for many neutrino mode analyses, even for rare $B \rightarrow l^+\nu!$

|V_{cb}| Determination

Inclusive semileptonic decays recoiling against fully reconstructed hadronic tagged Bs
 Unfold measured spectra & apply radiative corrections to obtain true distributions

 $|V_{cb}|$ Global Fit to $B \rightarrow X_c | v \& B \rightarrow X_s \gamma$

Vcb Summary

- Small but persistent discrepancy, up to $\sim 2.4\sigma$, between exclusive and inclusive.
 - May not be (only) due to differences in theory/normalisation approaches.

• Δ Exclusive~2%, Δ Inclusive~1-2% (\downarrow from 4% in 2004)

Inclusive-Exclusive Saturation Problem

- Measured sum of exclusive mode BR's ≠ inclusive
 - What is it? broad resonances, unmeasured D^{**} decay modes (<u>BR's unknown!</u>) neutral transitions (π^0 , η), Difficult to directly measure!
 - Affects exclusive |V_{cb}|& D^(*)τ+ν! (S.Stone, Monday)
 - Instead estimate cross feed into $|V_{cb}| \& D^{(*)}\tau^+\nu$ measurements using $B \rightarrow D^{(*)}h X$ BRs, measured *first* at ICHEP. Should shed some light on the problems.


```
B^{-} \rightarrow D_{s}^{(*)} K l v(0.59 \pm 0.12 \pm 0.15) 10^{-3}B^{+} BR(D^{0+} l v X) / BR(X l v)1.027 \pm 0.018_{stat} \pm 0.042_{sys}B^{0} BR(D^{0+} l v X) / BR(X l v)1.010 \pm 0.015_{stat} \pm 0.041_{sys}
```


$|V_{ub}|$ from Inclusive $B \rightarrow X_u |v|$

- Total rate can't be measured! Too much $B \rightarrow X_c I v$ background.
- Remove $b \rightarrow clv$: **BUT** lose a part of the $b \rightarrow ulv$ signal.

Problems:

Restriction of phase space **creates complication**, **need models**, **many debates over which to use** $\Gamma \sim |V_{ub}|^2 m_b^5$, but partial rates $\Delta \Gamma \sim |V_{ub}|^2 m_b^{10}$

Selecting b→ulv

• Need a large fraction of the rate, f_c , to control theory uncertainty.

Use hadronic $B_{tag} \rightarrow D^{(*)}Y$ to reduce combinatorial and precisely reconstruct m_{X} , q^2 .

Phillip URQUIJO 16

Hadron Mass in Recoil (method)

Semileptonic *B* decays, IUPAP Prize, ICHEP 2012

Phillip URQUIJO 17

universitätbonn

Inclusive |V_{ub}|

Use m_c , m_b , μ_{π^2} from $B \rightarrow X_c l \nu$ and $B \rightarrow X_s \gamma$

- Agreement between experiments!
- **Theory:** Error (5-7%) dominated by m_c , m_b , μ_{π}^2
- **Experiment**: Error from $B \rightarrow \rho/\omega/\eta \ l\nu$, non-resonant. & high X_u mass region (**unmeasured**)

4 approaches:

BLNP, DGE, GGOU (above), ADFR

Semileptonic *B* decays, IUPAP Prize, ICHEP 2012

Phillip URQUIJO 18

$B \rightarrow (\pi, \rho, \omega, \eta, \eta') I^+ v$

- Moving towards a complete understanding of X_ul⁺v semileptonic width, resonant&non-resonant
- In 2012, used new hadronic tag: ~2.1x10⁶ B⁺ tags, ~1.4x10⁶ B⁰ tags (2-3 x previous).
 - Best π^0 , $\rho^{0/+}$, ω , measurements and best tagged η , η' measurements.
 - m_{Xu}>1 GeV still a big challenge.

Approach	Efficiency	Purity
Untagged	High	Low
Tagged by $B \rightarrow D^{(*)} I v$		$\mathbf{\Lambda}$
Tagged by $B \rightarrow$ hadrons	Low	High

V_{ub}| Summary

ΔIncl.~6% (↓from 18% in 2004)
 ΔExcl.~10%
 Up to 2-3 σ difference between Excl.-Incl.

Variation on WA in inclusive is substantial, but theory agrees very well for p>1.0 measurements (pure OPE)

V_{ub}| Summary

Phillip URQUIJO Semileptonic *B* decays, IUPAP Prize, ICHEP 2012

universität**bon**

LHC Era: B_s, Λ_b and *b*-production

The LHC Era

- Vast quantity of *b*-mesons: they can be precisely reconstructed in modes with one neutrino!
 - Clean separation from large IP!
 - Used as a calibration tool (rely on well understood decay properties).
 - σ_{bb} and f_s/f_d key to many measurements at the LHC!
- SemileptonicL B_s/A_b decays teach us more about |V_{ub}|/|V_{cb}|, and for search for NP.

• To achieve this required new, precise measurements of the B_s/Λ_b systems.

Generally charm mesons tag the *b*-hadron species, and the lepton charge tags the *b* flavour, except for cross feed.

 $B_{s} \rightarrow (D_{s}^{**} \rightarrow DK)X\mu^{-}\nu$ $B^{0/+} \rightarrow D_{s}KX\mu^{-}\nu$

Semileptonic *B* decays, IUPAP Prize, ICHEP 2012

Phillip URQUIJO 23

$\sigma_{b\overline{b}}$ & f_s with Semileptonic B/B_s/A_b Decays

- First Cross section measured with $b \rightarrow D^0 X \mu v$ $\sigma_{b\overline{b}}$ (7 TeV:2> η >6) =75.3±5.4±13.0 pb
 - As clean as a B-factory
 - First *b* paper at the LHC (3 pb⁻¹)
 PU in PLB 694 (2010) 209–216
- First Production fraction: B/B_s/ $\Lambda_b \rightarrow D^0/D^+/D_s/\Lambda_c \mu \nu$
 - B_s showed no p_T dependence, **not** flat for Λ_b .
 - Solved a long standing puzzle in *b*-fragmentation!

PU in PRD.85.032008 (2011)

Semileptonic *B* decays, IUPAP Prize, ICHEP 2012

Phillip URQUIJO 24

B_s Semileptonic Width Components

Semileptonic *B* decays, IUPAP Prize, ICHEP 2012 Phillip URQUIJO

25

Inclusive Semileptonic B_s Decay Width, Y(5S)@Belle

- $\bullet B_s$ inclusive width
 - $B_s \rightarrow X | v$
- Assumed from theory (that SU3 symmetry is kept), to measure the production fraction.

 $\Gamma_{SL}(B_s) = \Gamma_{SL}(B_d) = \Gamma_{SL}(B_u)$

 Γ_{SL}(B_s) only precisely measured by Belle at Y(5S) with 121 fb⁻¹.

 $BR(B_s \rightarrow XI \nu):I=e, \mu \quad 10.61 \pm 0.46_{stat} \pm 0.37_{sys} \pm 0.67_{param}$

Semileptonic *B* decays, IUPAP Prize, ICHEP 2012 Phillip URQUIJO

26

Summary

• Measurements of $|V_{ub}|$ and $|V_{cb}|$ via Semileptonic decays have been a great challenge for both theory and experiment, particularly in controlling hadronic physics.

"Tension" between inclusive and exclusive analyses persists, while uncertainties are being reduced.

 $\left|\frac{V_{ub}}{V_{cb}}\right| = \begin{cases} 0.089 \pm 0.010 & \text{exclusive} \\ 0.0969 \pm 0.0068 & \text{inclusive} \end{cases}$ |V_{ub}| Exclusive (πlv) **2-3 σ** |V_{cb}| Exclusive (D*lv) Î 1-2 σ **V**_{cb} **Inclusive** |V_{ub}| Inclusive Ratios are compatible

Will they improve?

• Next generation B-factories will produce hadronic tagged, high statistics, high purity samples and fully measure the charmless semileptonic spectra.

- LHCb will provide competitive results in exclusive modes, already starting to dominate in B_s and Λ_b semileptonic decays.
- Still a big challenge for theory
 - Precision data can inspire and validate theory advances.

Semileptonic decays prove to be important in new physics flavour measurements!

 0.0846 ± 0.0035 fit

R. Van der Water

Backup

Summary of $\left|V_{ub}\right|$ and $\left|V_{cb}\right|$

Exclusive Vuble form factor

$$\begin{split} \Delta \zeta(0, q_{max}^2) &= \frac{G_F^2}{24\pi^3} \int_{0}^{q_{max}^2} dq^2 \, p_{\pi}^3 |f_+(q^2)|^2 \\ & \text{One FF for } B \to \pi \text{lv} \\ & \text{with massless lepton} \\ &= \frac{1}{|V_{ub}|^2 \tau_{B_0}} \int_{0}^{q_{max}^2} dq^2 \, \frac{d\mathcal{B}(B \to \pi \ell \nu)}{dq^2} \end{split}$$

EXERCISE Tales determined by $|V_{ub}|$ and Form Factors $= \frac{192\pi^3 m_3^3}{192\pi^3 m_3^3} [(m_B^2 + m_\pi^2 - q^2)^2 - 4m_B^2 m_\pi^2]^{3/2} |V_{ub}|^2 |f_+(q^2)^4 d_1$ LightConeSumRules or LatticeQCD • Empirical extrapolation necessary to extract $|V_{xb}|$ from measurements proach Efficiency Purity •Exclusive rates determined by $|V_{ub}|$ and $-\ell^+\nu)$

Approach	Efficiency	Purity
Untagged	High	Low
Tagged by $B \rightarrow D^{(*)} I v$	1	$\mathbf{\Lambda}$
Tagged by $B \rightarrow$ hadrons	Low	High

Semileptonic *B* decays, IUPAP Prize, ICHEP 2012

Phillip URQUIJO 30

0.6

0.3

25

 $q^2\,(GeV)$

LCSR*

Fermilab

HPQCD

ISGW2

20

15

10

Exclusive |V_{ub}|

- 1.|V_{ub}| from partial q² integral with **FF** (from theory/lattice).
- 2.**Fit** data&lattice calculations in q²(2-3 shape pars + |V_{ub}|, data & LQCD correlations)

Error budget:

2% from total rate 4% from q² shape 8% from FF normalisation

Semileptonic *B* decays, IUPAP Prize, ICHEP 2012 Ph

Phillip URQUIJO 31

universitätbonn

|V_{ub}| Exclusive-Inclusive Puzzle

Inclusive:

- |V_{ub}| varies depending upon theoretical framework and is highly sensitive to the input **b-quark** mass.
- High mass components, and fragmentation will be measured constrained.
- Exclusive:
 - Rely on normalisation from theory or Lattice, but stat limited tests of those predictions. Rely on precision tests from $D \rightarrow \pi/K I \nu$, and q^2 shape comparisons in B decays.
 - $|V_{ub}|$ can be obtained from other exclusive decay channels such as $B_s \rightarrow K \mu \nu$

Right handed current?

How to determine $|V_{ab}|$

2 Complementary approaches using different theoretical tools, and **different** experimental signatures. →Crucial independent consistency check.

Study weak interaction $|V_{cb}|$, $|V_{ub}|$ b ٧e B C,U Study strong interaction "Structure of the B meson" $\Gamma(B \to X_c \ell \nu) = \frac{G_F^2 m_b^5}{192\pi^3} |V_{cb}|^2 [[1 + A_{ew}] A_{nonpert} A_{pert}]$ hadron final states

Inclusive: sum over all hadron final states (heavy quark symmetry)

free quark decay

Exclusive:

 $\frac{d\Gamma(B \to \pi \ell \nu)}{da^2} = \frac{G_F^2}{24\pi^2} |V_{ub}|^2 p_\pi^3 |f_+(q^2)|^2$

 $B \rightarrow \pi$ form factor (lattice QCD)

QCD corrections

universitätbor

Semileptonic *B* decays, IUPAP Prize, ICHEP 2012

Phillip URQUIJO 33

Outlook for SL B decay measurements

Events/(2GeV²

500

-10

300 200 100

 LHCb: Neutrino/q² reconstruction. for exclusive measurements.

• $|V_{ub}|: B_s \rightarrow K^{(*)} \mu \nu, B \rightarrow \rho \mu \nu$

PRD.85.032008 (2011)

universitätbon

Belle II/SuperB:

- High statistics hadronic tag reconstruction.
- Full exploration of SL charmless (and charmed) mass spectra: up to higher mass.
- Decay differentials to fully test models

• Lattice errors expected to halve in the next 2 years

Semileptonic *B* decays, IUPAP Prize, ICHEP 2012

The $B \rightarrow D^{(*)} |v|$ differential decay rates are proportional to $|V_{cb}|^2$ and form factors.

$$d\Gamma(B \rightarrow D^{(*)}|v)/dw = (G_F^2/48\pi_B^2 m_D^3(m_B \rightarrow p_V^2)^2 (w_D^2 - 1)^{3/2} B_{cb}^2 (w_D^2 - 1)^{3$$

B =

From experiment $|V_{cb}| \times F.F. @w=1$ ρ_{D}, ρ_{D^*} (F.F. slopes) $M = \frac{d\Gamma(B)}{dw} = \frac{P_{erm}}{48\pi^3} m_D^* (m_B^2 + m_D)^2 (w^2 - 1)^{3/2} V_{cb}^* P_{B \to D}^{(*)} (w^2 - 1)^{3/2} V_{cb}^* P_{C}^* P_{$

Semileptonic B decays IUPAP Brize, ICHEP 2012 ation Phillip, UROUILO, 35CD, so choose ze

$|V_{cb}|$, $|V_{ub}|$ and New physics

- Indirect constraints on NP
- Some UT constraints strongly affected:
 - $B(B \rightarrow \tau \nu) \propto f_B^2 \cdot |V_{ub}|^2$
 - $\epsilon_{\rm K}$ dependent on $|V_{\rm cb}|$
 - $B(K^+ \rightarrow \pi^+ \nu \nu) \propto |V_{cb}|^4$

• Direct?

- LR models could affect the $b \rightarrow u l v$ transitions
- Charged Higgs can affect Cabibbo Favoured decays $B \rightarrow D^{(*)} \tau v$

A word on tauonic modes: $B \rightarrow D^{(*)} \tau^+ \nu_I$

• Higher values than expected from the SM But, no indications in favour of a Type II charged Higgs.

Semileptonic *B* decays, IUPAP Prize, ICHEP 2012

Phillip URQUIJO 37

Semileptonic *B* decays, IUPAP Prize, ICHEP 2012

Inclusive |V_{ub}| Averages

Normalising the production rates

Key ingredient - the inclusive charm+lepton final states measured for the first time at ICHEP 2012!

Signal

2

1000

800

600**-**

400

200

0

1

B^{+/0}→D^(*)IvX/B^{+/0}→IvX using
 Belle's hadronic tagging method.

Belle

Data

Total= 7302± 95

fit bkg= 679± 95

Fit sig= 6623±153

²=11.3, prob=0.19

p_{lep} GeV

• Also sheds some light on nature of exclusive-inclusive saturation problem. Semileptonic *B* decays, IUPAP Prize, ICHEP 2012 Phillip URQUIJO 42

B-factory Approaches to Measuring $B \rightarrow X_u | v$

