

New measurements of forward physics in the TOTEM experiment at the LHC

Hubert Niewiadomski on behalf of the TOTEM Collaboration

ICHEP 2012, 4-11 July 2012, Melbourne

TOTEM Physics Overview

Total cross-section

Soft and hard diffraction

Forward physics

IP5

TOTEM Setup in LHC IP5

(together with CMS)

24 Roman Pots (on both sides of CMS):

measure elastic & diffractive protons close to outgoing beam

TOTEM inelastic telescopes

- charged particle detection
- vertex reconstruction
- trigger

Roman Pot detectors

- detect protons scattered at Interaction Point 5
- near-beam movable devices
- equipped with edgeless silicon microstrip detectors
- resolution of ~16μm
- trigger capability with FPGA processing

T2 telescope:

Measurement of the forward charged particle density

$$5.3 < \eta < 6.5$$

$$\sqrt{s} = 7 \,\text{GeV}$$

$dN_{ch}/d\eta$ in T2

Data sample: events at low luminosity and low pile-up, triggered with T2

Selection: at least one track reconstructed

Primary particle definition: charged particle with $t > 0.3 \times 10^{-10}$ s & $p_t > 40$ MeV/c

Primary particle selection:

primary/secondary discrimination
 with primary vertex reconstruction

Primary track reconstruction efficiency

- evaluated as a function of the track η and the multiplicity
- efficiency of 80%
- fraction of primary tracks within the cuts of 75% 90% (η dependent)

dN_{ch}/dh in T2 : results

TOTEM measurements compared to MC predictions

TOTEM measurements combined with the other LHC experiments

Published: EPL 98 (2012) 31002

Roman Pots:

Measurement of the Elastic pp Cross Section

 $7 \times 10^{-3} \, \text{GeV}^2 < |t| < 3.5 \, \text{GeV}^2$

$$\sqrt{s} = 7 \,\text{GeV}$$

Data samples

Wide range of |t| measured with various LHC configurations

Set	$\beta^*(m)$	RP approach	\mathcal{L}_{int}	t range	Elastic
			(μb^{-1})	(GeV^2)	events
1	90	$4.8 \text{-} 6.5 \sigma$	83	$7 \cdot 10^{-3} - 0.5$	1M
2	90	10σ	1.7	0.02 - 0.4	14k
3	3.5	7σ	6.8×10^3	0.36 - 3	66k
4	3.5	18σ	2.3×10 ⁶	2 - 3.5	10k

Elastic pp scattering in Roman Pots

$$\uparrow t_y = -p^2 \Theta_y^2$$

$$\xi = \Delta p/p$$

Diagonals analysed independently

LHC optics in brief

Proton position at a given RP (x, y) is a function of position (x*, y*) and angle (Θ_x^* , Θ_v^*) at IP5:

$$\begin{array}{c} \text{measured} \\ \text{in Roman} \\ \text{Pots} \end{array} \left\{ \left(\begin{array}{c} x \\ \Theta_x \\ y \\ \Theta_y \\ \Delta p/p \end{array} \right)_{\text{RP}} = \left(\begin{array}{cccc} v_x & L_x & 0 & 0 & D_x \\ v_x' & L_x' & 0 & 0 & D_x' \\ 0 & 0 & v_y & L_y & 0 \\ 0 & 0 & v_y' & L_y' & 0 \\ 0 & 0 & 0 & 1 \end{array} \right) \left(\begin{array}{c} x^* \\ \Theta_x^* \\ y^* \\ \Theta_y^* \\ \Delta p/p \end{array} \right)_{\text{IP5}} - \text{reconstructed}$$

Elastic proton reconstruction:

- Scattering angle reconstructed in both projections
- High Θ^* -reconstruction resolution available $\sigma(\Theta_y^*)=1.7$ µrad for $\beta^*=90$ m and low t-range $\sigma(\Theta_y^*)=12.5$ µrad for $\beta^*=3.5$ m and high t-range

$$\begin{cases} \Theta_x^* = \left(\Theta_{x,RP} - \frac{dv_x}{ds} x^*\right) / \frac{dL_x}{ds}, & \Delta p \\ \Theta_y^* = \left(y_{RP} - v_y y^*\right) / L_y & p \end{cases} = 0$$

Excellent optics calibration and alignment required

Novel method of TOTEM

Calibrations per beam fill

Optics determination

Special TOTEM runs, optics can change from fill to fill !!

- Analysis of transport matrix sensitivity to LHC imperfections (MADX)
- Machine tolerances and measured errors combined
 - magnet currents
 - magnet conversion curves, field imperfections
 - magnet displacements
- Measured optics constraints
 from RP proton tracks distributions
- Optics matched with MADX
- Procedure verified with MC studies

$$\begin{cases} \frac{\delta d\dot{L_x}}{d\dot{L_x}} < 1\% \\ \frac{\delta L_y}{L_y} < 1\% \end{cases} \Rightarrow \frac{\delta t}{t} \approx 0.8\% - 2.6\% \text{ for } \beta^* = 90\text{m}$$
Optics related systematic errors

- H. Niewiadomski, Roman Pots for beam diagnostic, OMCM, CERN, 20-23.06.2011
- H. Niewiadomski, F. Nemes, LHC Optics Determination with Proton Tracks, IPAC'12, Louisiana, USA, 20-25.05.2012

Alignment of Roman Pots

Movable devices be definition !!

- internal components alignment: metrology, tracks
- with respect to LHC beams : beam touching exercise (<200 μm)
- relative between RPs with overlapping tracks (Millepede, a few μm)
- physics based : exploits co-linearity of elastically scattered protons, constraints especially the 2 sides of IP5 (a few μ m)

Final precision of 10 µm achieved

13

Elastic pp scattering : analysis highlights

Proton selection cuts

+ collinearity cuts (left-right)

$$\Theta^*_{x'}$$
, $45 \leftrightarrow \Theta^*_{x'}$, 56
 $\Theta^*_{y'}$, $45 \leftrightarrow \Theta^*_{y'}$, 56

- + low ξ cuts
- + vertex cuts
- + optics related cuts

Background subtraction

Acceptance correction

Elastic pp scattering: analysis highlights/ II

Resolution unfolding

Normalization

Reconstruction efficiency

- intrinsic detector inefficiency: 1-2% / pot
- elastic proton lost due to interaction: 1.5%/pot
- event lost due to overlap with beam halo (depends on dataset and diagonal) 4% 8% (β *=90m); 30% (β *=3.5m)

Luminosity from CMS systematic error of 4%

Elastic scattering cross-section

Elastic scattering cross-section

Extrapolation to t=0

$$B = 19.9 \pm 0.26$$
 syst ± 0.04 stat GeV^{-2}

Elastic cross-section

$$\sigma_{EL} = \sigma_{EL,extrapol.} + \sigma_{EL,meas} = 25.4 \pm 1.0^{\text{lumi}} \pm 0.3^{\text{syst}} \pm 0.03^{\text{stat}} \text{ mb (90\% directly measured)}$$

$$24.8 \pm 1.0^{\text{lumi}} \pm 0.2^{\text{syst}} \pm 0.2^{\text{stat}} \text{ mb (50\% directly measured)}$$

T2 and T1 telescopes:

Measurement of the Inelastic pp Cross Section

$$\sqrt{s} = 7 \,\text{GeV}$$

Inelastic Cross Section

direct T1 and T2 measurement

Inelastic events in T2: classification

- tracks in both hemispheres non-diffractive minimum bias double diffraction
- tracks in a single hemisphere mainly single diffraction M_X > 3.4 GeV/c²

Corrections to the T2 visible events

Trigger Efficiency:
 (measured from zero bias data with respect to track multiplicity)

- Track reconstruction efficiency: 1 % (based on MC tuned with data)
- Beam-gas background: 0.54 %
 (measured with non colliding bunch data)
- Pile-up (μ =0.03):(contribution measured from zero bias data)

Inelastic Cross Section

σ_{inelastic}, T2 visible inelastic

Missing inelastic cross-section

• Events visible in T1 but not in T2: 2.0 % (estimated from zero bias data)

Rapidity gap in T2 : 0.57 % (estimated from T1 gap probability transferred to T2)

- Central Diffraction: T1 & T2 empty: 0.54 % (based on MC, correction max $\sim 0.25 \times \sigma_{CD}$, quoted in systematic error)
- Low Mass Diffraction : 3.7 % ± 2 % syst (Several models studied, correction based on **QGSJET-II-4**, imposing observed 2hemisphere/1hemisphere event ratio and the effect of 'secondaries')
 - constrained by the Total cross-section measurement (see later)
 - will be measured with a single proton trigger, large β* optics and clean beam conds.

 $\sigma_{\text{inelastic}} = 73.7 \pm 0.1^{\text{stat}} \pm 1.7^{\text{syst}} \pm 2.9^{\text{lumi}} \text{ mb}$

Roman Pots, T2 and T1 telescopes:

Total Cross Section Measurement

$$\sqrt{s} = 7 \,\text{GeV}$$

Total Cross Section

4 approaches

- 1) CMS Luminosity (small bunches) + Elastic Scattering+ Optical Theorem depends on CMS luminosity for low-L bunches & elastic efficiencies & ρ
- 2) CMS Luminosity (large bunches) + Elastic Scattering + Optical Theorem compare the CMS luminosity measurement for high-L vs. low-L bunches

$$\sigma_{tot}^2 = \frac{16\pi}{(1+\rho^2)} \frac{1}{\mathcal{L}} \left(\frac{dN_{el}}{dt}\right)_{t=0}$$
 ρ =0.14±0.09 (Compete)

3) CMS Luminosity (large bunches) + Elastic Scattering + Inelastic Scattering minimizes dependence on elastic efficiencies and no dependence on ρ

$$\sigma_{tot} = \sigma_{el} + \sigma_{inel}$$

4) (L-independent) + Elastic Scattering + Inelastic Scattering+ Optical Theorem eliminates dependence on luminosity

$$\sigma_{tot} = \frac{16\pi}{(1+\rho^2)} \frac{(dN_{el}/dt)_{t=0}}{(N_{el}+N_{inel})}$$

Total Cross Section

4 approaches

1) CMS Luminosity (small bunches) + Elastic Scattering + Optical Theorem depends on CMS luminosity for low-L bunches & elastic efficiencies & ρ

$$\sigma_{TOT} = 98.3 \text{ mb} \pm 2.0 \text{ mb}$$
 EPL 96 (2011) 21002

2) CMS Luminosity (large bunches) + Elastic Scattering + Optical Theorem compare the CMS luminosity measurement for high-L vs. low-L bunches

$$\sigma_{TOT} = 98.6 \text{ mb} \pm 2.3 \text{ mb}$$

3) CMS Luminosity (large bunches) + Elastic Scattering + Inelastic Scattering minimizes dependence on elastic efficiencies and no dependence on ρ

$$\sigma_{TOT} = 99.1 \text{ mb} \pm 4.4 \text{ mb}$$

4) (L-independent) + Elastic Scattering + Inelastic Scattering + Optical Theorem eliminates dependence on luminosity

$$\sigma_{TOT} = 98.1 \text{ mb} \pm 2.4 \text{ mb}$$

Hubert Niewiadomski, TOTEM

ICHEP 2012

Cross Sections: Summary

Total Cross Section

calibrations & implications

Luminosity calibration:

$$\mathcal{L} = \frac{(1+\rho^2)}{16\pi} \frac{(N_{el}+N_{inel})^2}{(dN_{el}/dt)_{t=0}} \quad \begin{array}{l} \text{1)} \int Ldt = 82/\mu\text{b} \pm 4\% & \int Ldt = 83.7/\mu\text{b} \pm 3.8\% \\ \text{2)} \int Ldt = 1.65/\mu\text{b} \pm 4\% & \int Ldt = 1.65/\mu\text{b} \pm 4.5\% \end{array}$$

Estimated by CMS

1)
$$\int Ldt = 82/\mu b \pm 4\%$$

2)
$$\int Ldt = 1.65/\mu b \pm 4\%$$

Estimated by TOTEM

$$\int Ldt = 1.65/\mu b \pm 4.5 \%$$

Luminosity and ρ independent ratios:

$$\sigma_{\rm el} / \sigma_{\rm tot} = 0.257 \pm 2\%$$

$$\sigma_{\rm el}/\sigma_{\rm tot} = 0.257 \pm 2\%$$
 $\sigma_{\rm el}/\sigma_{\rm inel} = 0.354 \pm 2.6\%$

Low mass diffraction cross-section constrained:

From method (2) inclusive estimation of $\sigma_{\text{inel}} = \sigma_{\text{tot}} - \sigma_{\text{el}} = 73.2 \pm 1.3 \text{mb}$ However, T1+T2 visible $\sigma^{\eta < 6.5}_{inel}$ = 70.9 ± 2.8 mb

$$\sigma^{\eta > 6.5}_{inel} = 3.2\% \ \sigma^{\eta < 6.5}_{inel}$$
 (upper limit of 4.5 mb)

TOTEM and CMS:

Diffractive physics DPE, SD, di-jets...

Double Pomeron Exchange

Excellent RP acceptance in $\beta^* = 90$ m runs

- DPE protons of -t > 0.02GeV² detected by RP
- nearly complete ξ-acceptance

large rapidity gap Δη no tracks in T2

small rapidity gap Δη tracks in T2

large ξ proton

Data Oct'11: DPE Cross-Section

Distribution integrated over ξ

Data Taking with CMS

Semi-hard and hard diffraction (CMS-TOTEM TDR):

inclusive and exclusive dijets + protons + rapidity gaps ...

CMS ↔ **TOTEM** trigger exchange

Offline data synchronization

Towards common data taking:

2011 Ion run : proof of principle

2012 CMS jet trigger to TOTEM; low statistics collected

2012 Low pile up run; 8M events collected

Run with a complete trigger menu; exchange of trigger in both directions (CMS jets trigger; TOTEM min bias; RPs were NOT inserted)

2012 First common runs with standard optics with Roman Pots inserted

Data taking foreseen in 2012:

β*=90m, 156 bunches

expected integrated luminosity of 6nb⁻¹/h

Proton coverage : full range in ξ , -t > 0.02 GeV²

β*=0.6m, ~1400 bunches, full luminosity

Proton coverage : $\xi > 2-3\%$, full range of t

Thank you!

OPTICS

Objective:

to measure elastic scattering at high |t|

Properties of the optics:

- $\sigma_{IP} \approx 37 \ \mu m$ (magnification is not crucial)
- $L_x \approx 0$, $L_y = 22.4$ m
- beam divergence $\sigma_{\Theta^*} \approx 17-18 \mu rad$

Data sources to improve our optics understanding:

- TIMBER database magnet currents
- FIDEL team conversion curves, implemented with LSA
- WISE field harmonics, magnet's displacements`

The effect of machine imperfections \(\beta *=3.5 m \)

Machine imperfections:

- Strength conversion error, $\sigma(B)/B \approx 10^{-3}$
- Beam momentum offset, $\sigma(p)/p \approx 10^{-3}$
- Magnet rotations, $\sigma(\phi) \approx 1$ mrad
- Beam harmonics, $\sigma(B)/B \approx 10^{-4}$
- Power converter errors, $\sigma(I)/I \approx 10^{-4}$
- Magnet positions Δx , $\Delta y \approx 100 \mu m$

Imperfections alter the optics!

Perturbed element	$\delta L_{y,b1}/L_{y,b1}$ [%]		
MQXA.1R5	0.98		
MQXB.A2R5	-2.24		
MQXB.B2R5	-2.42		
MQXA.3R5	1.45		
MQY.4R5.B1	-0.10		
MQML.5R5.B1	0.05		
Δρ/ρ	-2.19		

Constraints from proton tracks in the Roman Pots B*=3.5m

Optics imperfections can be determined from proton tracks *measured* in the Roman Pots. The method is based on:

- elastic events are easy to tag
- the elements of the transport matrix are mutually correlated

$$\Theta_{y,b1}^* = \Theta_{y,b2}^*$$

$$\Theta^* - \Theta^*$$

$$\boldsymbol{\Theta}_{x,b1}^* = \boldsymbol{\Theta}_{x,b2}^*$$

$$R_1 \equiv \frac{\Theta_{x,b1,RP}}{\Theta_{x,b2,RP}} \approx \frac{\frac{dL_{x,b1,RP}}{ds}}{\frac{dL_{x,b1,RP}}{ds}}$$

Matching the optics B*=3.5m

On the basis of constraints R₁-R₁₀ the optics can be estimated.

$$R_{2} \equiv \frac{y_{b1,RP}}{y_{b2,RP}} \approx \frac{L_{y,b1,RP}}{L_{y,b2,RP}}$$

$$R_{2} \equiv \frac{y_{b1,RP}}{y_{b2,RP}} \approx \frac{L_{y,b1,RP}}{L_{y,b2,RP}}$$
 $R_{3} \equiv \frac{\Theta_{y,b1,RP}}{y_{b1,RP}} \approx \frac{\frac{dL_{y,b1,RP}}{ds}}{L_{y,b1,RP}}$

$$R_7 \equiv \frac{x_{b1,RP}}{y_{b1,RP}} \approx \frac{m_{14,b1,near_pots}}{L_{y,b1,near_pots}}$$

$$R_{7} \equiv \frac{x_{b1,RP}}{y_{b1,RP}} \approx \frac{m_{14,b1,near_pots}}{L_{y,b1,near_pots}} \quad R_{5} \equiv \frac{x_{b1,RP}}{\Theta_{x,b1,RP}} \approx \frac{L_{x,b1,RP}}{dL_{x,b1,RP}/ds}$$

Monte-Carlo confirmation of the method (presented @IPAC 2012)

The Monte-Carlo study included the effect of:

- magnet strengths
- beam momenta
- displacements, rotations
- kickers, field harmonics
- elastic scattering Θ-distributions

Optical function	Before		Matched	
relative error	Mean [%]	RMS [%]	Mean [%]	RMS [%]
$\delta L_{y,b1}/L_{y,b1}$	0.77	3.0	5.7 · 10 ⁻³	9.9 · 10-2
$\delta (dL_{x,b1}/ds)/(dL_{x,b1}/ds)$	1.0	1.1	-1.2 · 10 ⁻¹	2.1 · 10 ⁻¹
$\delta L_{y,b2}/L_{y,b2}$	2.0	3.8	1.5 · 10 ⁻¹	9.5 · 10 ⁻²
$\delta (dL_{x,b2}/ds)/(dL_{x,b2}/ds)$	-1.14	1.2	-7.6 · 10 ⁻²	2.1 · 10 ⁻¹

Conclusion: for β *=3.5m TOTEM can measure the transfer matrix between IP5 and RPs with a precision

Relative error distribution before and after matching

β^* = 90m optics achievable using the standard LHC injection optics. Properties:

- σ_{Θ^*} = 2.5 µrad, $L_x \approx 0$, $L_v \approx 260$ m
- vertex size σ_{IP} ≈ 212 μm
- Acceptance: $|t| > 3 \cdot 10^{-2} \, \text{GeV}^2$, RP distance from beam center 10 $\sigma_{\text{beam size@RP}}$
- parallel to point focusing only in vertical plane @RP220

Effective lengths from IP5 to RP @220 m

Objectives:

- First measurement of σ_{tot} elastic scattering in a wide |t| range
- inclusive studies of diffractive processes
- measurement of forward charged multiplicity

Sensitivity of the effective length L_v :

- 1 ‰ perturbations magnet strength, beam momenta
- Conclusion: not necessary to match the β *=90 m optics

Perturbed element	δ _{Ly,b1} /L _{y,b1} [%]		
MQXA.1R5	0.14		
MQXB.A2R5	-0.23		
MQXB.B2R5	-0.25		
MQXA.3R5	0.20		
MQY.4R5.B1	-0.01		
MQML.5R5.B1	0.04		
Δρ/ρ	0.01		

Elastic pp Scattering – from ISR to Tevatron

Minimum bias physics

Charged particle acceptance (together with CMS): |η| ≤ 6.5

Trigger: one T2 track(?)

dN/dη_{pPb} using T1 & T2 (vs centrality from CMS)

Forward-backward multiplicity correlations?

Central-forward multiplicity correlations?

Pattern recognition at high multiplicity to be optimized

40

Energy flow & small x: T1+HF, T2+Castor

Cross-sections

Test of dynamics:

- · knockout: p Pb \rightarrow p + d + (A-2)* $\xi_{\text{fragment}} = (1 (A/Z)_{\text{fragment}} / (A/Z)_{\text{Pb}})$
- . measure both p & d (= "p with $\Delta p/p$ = -0.21") + veto hadron activity. Need large t for p or significant $\Delta p/p$. Study $\Delta p/p$ & t dependence.
- quasielastic: p Pb → p Pb*
 dominates at large t
 measure xi & t of p + only γ
 on opposite side (veto hadrons)

Diffraction & γγ

very large Pomeron & γ fluxes
 but nothing measured in RP on
 outgoing Pb side (rate problem?)
 p with signficant Δp/p (or large t)
 + central object (jets, J/Ψ, Y etc..)

TOTEM