Results from the NA61/SHIνE experiment and future plans

Silvestro di Luise
On behalf of the NA61/SHIνE collaboration
Swiss Federal Institute of Technology, ETH, Zürich, Switzerland
Silvestro.Di.Luise@cern.ch

36th International Conference for High Energy Physics
4-11 July 2012, Melbourne
Institute of Physics, University of Silesia, Katowice, Poland
Forschungszentrum Karlsruhe, Karlsruhe, Germany
Fachhochschule Frankfurt, Frankfurt, Germany
Joint Institute for Nuclear Research, Dubna, Russia
University of Frankfurt, Frankfurt, Germany
University of Geneva, Geneva, Switzerland
Jan Kochanowski Univeristy, Kielce, Poland
Jagiellonian University, Cracow, Poland
University of Belgrade, Belgrade, Serbia
University of Bergen, Bergen, Norway
University of Bern, Bern, Switzerland
KFKI IPNP, Budapest, Hungary
ETH Zurich, Zurich, Switzerland
KEK, Tsukuba, Japan
University of Athens, Athens, Greece
University of Warsaw, Warsaw, Poland
University of Wroclaw, Wroclaw, Poland
Ruder Boskovic Institute, Zagreb, Croatia
State University of New York, Stony Brook, USA
Institute for Nuclear Research, Moscow, Russia
University of Nova Gorica, Nova Gorica, Slovenia
LPNHE, Universites de Paris VI et VII, Paris, France
Warsaw University of Technology, Warsaw, Poland
Soltan Institute for Nuclear Studies, Warsaw, Poland
Faculty of Physics, University of Sofia, Sofia, Bulgaria
St. Petersburg State University, St. Petersburg, Russia
Universidad Tecnica Federico Santa Maria, Valparaiso, Chile

136 members, 27 institutes, 14 countries
SHINE: SPS Heavy Ion & Neutrino Experiment

Heavy Ions
- Search for the critical point of strongly interacting matter
- Study the onset of the deconfinement

Astro-particle
- Precise hadro-production measurements for Comic Rays
 Extensive Air Shower prediction

 → **Pierre Auger Observatory**
 → **KASCADE**

Neutrinos
- Precise hadro-production measurements for precise characterization of the neutrino flux.
 → **T2K** experiment (Japan)

Future:
- Involvement in the Fermilab neutrino program
Strongly interacting matter

Structure of the region of transition from Hadron Gas (HG) to Quark Gluon Plasma (QGP).

Lattice QCD calculation:
- 1st order phase boundary (Onset of the Deconfinement)
- the end point of the phase transition line is the Critical Point → 2nd order transition

- SPS covers the most important region of the Phase Space diagram

- Evidence for Onset of the Deconfinement observed in NA49 at E~30A GeV

- Critical Point should be searched above the Onset of the Deconfinement E > 30A GeV

- Critical Point may be located at SPS energies:
 \[(T, \mu_B) = (162 \pm 2, 360 \pm 40) \text{ MeV}\]

\[
\mu_B = 360 \text{ MeV} \Leftrightarrow E \approx 50A \text{ GeV}
\]
Beccatini, Manninen, Gazdzicki
PRC 73 044905 (2006)
Onset of the Deconfinement status of the observations

Energy dependence of specific hadron-production properties exhibit peculiar structures which are difficult to explain without including HG-QGP transitions.

→ study of the intermediate systems → NA61/SHINE Heavy Ion program

The kink in pion multiplicity

Entropy increase at the onset of the deconfinement

The horn in strangeness yield

K/π yields ratio at high energy approach a constant level as expected for deconfined matter

The step in T parameter:

inverse slope of m_T

Onset: mixed phase where T do not increase with collision energy
Study of the properties of the **Onset of the Deconfinement**, establishing the system size dependence of its signals

Energy system scan: verify the observation of similar structures (kink, horn, step) vanishing for lighter nuclei
Search for the **Critical Point** of strongly interacting matter by studying the system size and collision energy dependence of hadron fluctuations and correlations.

Search for the hill of fluctuations
Increase of critical point signal (multiplicity and average p_T fluctuations,...) for system freeze-out close to the critical point.
Experimental Apparatus

- **TOF**
- **Vertice TPCs**
- **Super conduction magnets**

- **TPC**

- **Large acceptance**: \(\approx 50\% \)

- **High momentum resolution**:
 \[\frac{\sigma(p)}{p^2} \approx 10^{-4}\left(\text{GeV/c}^{-1}\right) \]
 at full magnetic field

- **Good particle identification**:
 \[
 \frac{\sigma(\text{TOF})}{100\text{ps}},
 \frac{\sigma(dE/dx)}{\langle dE/dx \rangle} \approx 0.04,
 \frac{\sigma(m_{inv})}{5\text{MeV/c}^2}
 \]

- **High detector efficiency**: \(> 95\% \)
Several Upgrades of the Detector inherited by NA49

2007: construction of the forward ToF wall to extend particle identification acceptance

2008: replacement of the TPC readout and central DAQ: x10 event rate increase (80 Hz)

2010: modification of beamline for production of fragmented ion beams

2011: replacement of the old calorimeter (VCAL) used for event centrality measurement in A+A spectator energy by the new Projectile Spectator Detector (PSD) to get 1 nucleon precision (x5 improvement)

2011: insertion of He beam pipes to VTPCs to reject δ-electrons

2011: Z-detectors (Cerenkov) to measure beam charge of secondary ion beam

2011: A-detector (time-of-flight) to measure isotope composition of secondary ion beams

2011: construction of Low Momenta Particle Detector (LMPD) to count number of low momentum protons in h+A collision for centrality determination (“target spectator detector”)
The He beam pipe

- δ-electrons produced along the beam line → background for fluctuations measurement related to the search for the critical point
- double wall He beam pipes placed inside both Vertex TPCs
- significant background reduction

Longitudinal position of the reconstructed interaction vertex

(p+p 30 GeV)
The Projectile Spectator Detector

Precise measurement of the energy of the projectile spectator:
- trigger level centrality selection
- event-by-event fluctuations
- reconstruction of the reaction plane

High energy resolution: $55\%/\sqrt{E}+2\%$ Resolution of ±1 nucleon

Compensating calorimeter. Pb/Scintillator (4/1) sandwich
\(\pi^- \) from p+C at 31 GeV/c

rapidity spectrum

\[(\pi^-) \text{ yield} \propto \langle N_{\text{wounded}} \rangle \]

\(p+C \) at 31 GeV/c data taken in 2007 pilot run

- \(p+C \): projectile-target asymmetry: spectra shifted towards target rapidity

- Pb+Pb points are divided by the number of wounded projectile nucleons

- NA61 points at the energy of the onset of the deconfinement confirm approximate proportionality of the \(\pi \) yield to the mean number of wounded nucleons
\(\pi^- \) from p+C at 31 GeV/c

transverse mass spectrum

- Shape of \(m_T \) spectra at mid-rapidity change form convex in p+C to concave in central Pb+Pb
- According to hydrodynamical model this is due to strong radial collective flow in Pb+Pb collisions which is absent in p+C collisions.
Secondary ion beam

- **Fragmentation target** length optimized to maximize the needed fragment production
- double **magnetic spectrometer** separate fragments according to the selected magnetic rigidity
- **Degrader**, Cu plate where ions lose energy ($dE/dx \sim Z^2$): allows to reach required beam purity

2010 Test:
Successful data taking with secondary Be beam (40A, 75A, 150A GeV/c) from fragmentation of primary Pb beam.
Main physics goal: measurement of the last unknown neutrino flavor mixing angle θ_{13}

Observe the oscillation $\nu_\mu \rightarrow \nu_e$ (\nu_\mu appearance)

High precision data on Pion and Kaon production in the T2K target needed to determine the initial neutrino flux

Proton production important to measure reinteractions in the target
NA61/SHINE Particle Identification

dE/dx or dE/dx+ToF information needed for particle identification over a wide momentum range

p+C @ 31 GeV/c (2007 pilot run)
Results on hadroproduction

Data: p+C at 31 GeV/c.

π^+

$p+C \rightarrow \pi^+ + X$

\mathcal{K}^+

\mathcal{K}^0_S
$\textbf{Preliminary}$

ρ^0
$\textbf{Preliminary}$
Summary

Ion program:

• p-p energy scan completed
• Be-Be to be completed in 2012: successful secondary ion beam
• Next: Ar and Xe primary ion beam scan

Future plans:

➢ measurement of open charm production
➢ Pb+Pb energy scan: improve NA49 measurement with high precision NA61 measurements

Neutrino program:p+C 31 GeV/c

• π^\pm, K$^+$ production cross sections
• p, K0: preliminary
• ongoing analysis on high statistics runs
Backup slides
Study of the properties of the **Onset of the Deconfinement**, establishing the system size dependence of its signals

Search for the **Critical Point** of strongly interacting matter by studying the system size and collision energy dependence of hadron fluctuations and correlations
In near future NA61/SHINE may remain the only large acceptance hadron spectrometer at the non-LHC energies.
Secondary Ion beam line for NA61

The H2 Beam Line as Ion Fragment Separator

- Double magnetic spectrometer to separate ion fragments corresponding to selected magnetic rigidity B_ρ
- Fragmentation target (T2) length optimized to the desired fragment production
- Degrader (Cu plate where ions lose energy $dE/dx \sim Z^2$) allows to reach required beam purity

Tested in 2010 for 13.9A and 80A GeV Pb ion beams
Recent important upgrades – Z and A detectors (2011)

- For secondary ion beams, triggering on charge of beam nucleus is necessary.
- Constructed Z-detectors (gas and quartz Cerenkov, sensitive to Z^2):

For secondary ion beams, monitoring isotope composition is necessary (given the Z).

- Constructed diagnostic A-detector (ToF on 140m) to monitor purity:
Recent important upgrades – Low Momentum Particle Detector (2011)

- Counts number of low momentum protons in h+A collisions for centrality determination ("target spectator detector").
- Two small size TPCs with 4 absorber layers. PID + momentum determination by $dE/dx +$ range measurement.

Results and plans of the NA61/SHINE experiment at the CERN-SPS – p. 18