Suppression of high-p_t heavy-flavour particles in Pb-Pb collisions at the LHC, measured with ALICE

Andrea Dainese (INFN Padova, Italy) on behalf of the ALICE Collaboration

Outline of the Talk

Introduction: heavy quarks as probes of QCD matter at LHC

- Heavy flavour in ALICE
 - D mesons at central rapidity
 - electrons at central rapidity

muons at forward rapidity

Compare Pb-Pb and pp \rightarrow Nuclear modification

Parton energy loss and the nuclear modification factor

Parton Energy Loss by

- medium-induced gluon radiation
- collisions with medium gluons

$$p' = p - \Delta E(\varepsilon_{medium})$$

Salgado, Wiedemann, PRD 68(2003) 014008.

ICHEP2012, Melbourne, 06.07.12

Andrea Dainese

4

Dokshitzer and Kharzeev, PLB 519 (2001) 199.

See e.g.:

Dokshitzer and Kharzeev, PLB 519 (2001) 199. Armesto, Salgado, Wiedemann, PRD 69 (2004) 114003. Djordjevic, Gyulassy, Horowitz, Wicks, NPA 783 (2007) 493.

ICHEP2012, Melbourne, 06.07.12

ALICE apparatus and datasets

V0

T0

D meson cross sections in pp 7 TeV

- Used as a reference for Pb-Pb studies (scaled to 2.76 TeV based on FONLL)
- Scaling validated with small dataset at 2.76 TeV

FONLL: Cacciari et al., arXiv:1205.6344 GM-VFNS: Kniehl et al., arXiv:1202.0439 Well described by perturbative QCD calculations: FONLL and GM-VFNS

Melbourne

D p_t distributions in Pb-Pb

- wrt T_{AA} -scaled pp reference
- Significant suppression also in semiperipheral (40-80%) wrt T_{AA}-scaled pp reference

arXiv:1203.2160

D meson nuclear modification factor $^{2}E^{--1}$ $\frac{1}{dN}$

- Suppression for charm with respect to binary scaling is a factor 3-4 above 5 GeV/c
- Compatible among the three species
- Less suppression in peripheral collisions

ALICE Heavy Flavour detection: electrons, |y| < 0.5

 $D,B \rightarrow e+X$

TPC/TOF/TRD/EMCAL (e/π id)

TPC (tracking e/π id)

ITS (tracking & vertexing)

e

Inclusive electron spectrum

Subtract data-tuned cocktail of non-HF backgrounds

HF-decay electrons

ICHEP2012, Melbourne, 06.07.12

Cocktail-subtracted electron R_{AA}

Consider (inclusive electrons – cocktail) spectrum

- > low p_t : large systematic uncertainties (mainly from electron ID)
- > above 3-4 GeV/c: dominated by charm and beauty decays

Melbourne

ALICE Heavy Flavour detection: muons, 2.5<y<

MUON (tracking, µ id)

Analysis strategy:
 remove hadrons and low mecondary muons by requiring a muon trigger signal
 remove decay muons:

 pp: MC, normalized to data at low pt
 Pb-Pb: from measured π/K yields at central rapidity

 muons from HF (charm and beauty)

- High-statistics measurement at both energies (muon trigger)
- FONLL describes the data and indicates beauty dominance above 8 GeV/c

15

 Models with E-loss (Vitev and BDMPS-ASW) describe both D and μ

BAMPS model (elastic only) seems to over-suppress charm wrt beauty

Summary

Rich set of heavy-flavour production measurements with ALICE

- R_{AA} for D
 and B At high p_t for now (μ and e)
- Suppression of high-p_t heavy-flavour production (and charm azimuthal anisotropy → talk by C. Perez)
- Indicate strong medium effect on c and b quarks
- Consistent with expected energy loss mechanisms
 - **Pattern?** No clear pattern, data not conclusive yet

 Next step: extended Pb-Pb measurements with 2011 data and measurement of initial-state effects in forthcoming p-Pb run at the LHC

EXTRA SLIDES

 $R_{AA}(p_{T})$

0.0

HQs E loss: some expectations

Energy loss based predictions: factor 3-5 suppression for D mesons
 Significantly smaller suppression for B

• Shorter formation time of heavy hadrons → additional R_{AA} suppression due to inmedium dissociation? $\tau_{form}(p_T = 10 \text{ GeV})$ π D B

25 fm 1.6 fm 0.4 fm

Wicks, Gyulassy, "Last Call for LHC Predictions" workshop, 2007

15

p_T (GeV)

20

25

Vitev, et al, PRC80 (2009)

p_⊤ [GeV]

ICHEP2012, Melbourne, 06.07.12

10

Triggers and Pb-Pb Collision Centrality

- Minimum-bias (MB): combinations of the following detectors
 Pixel Fast-Or (1 or 2 hits)
 VZERO scintillators (one or both sides)
 → pp: 87% of σ_{inelastic}
 → Pb-Pb: fully efficient in 0-88% of σ_{hadronic}
- Single muon: MB + a muon with p_t>0.5 GeV/c and -4<η<-2.5

Pb-Pb centrality classes (percentiles of $\sigma_{hadronic}$) from the VZERO signal amplitude, which is well-described by the Glauber-model

•VZERO amplitude used also online for centrality-based triggering

arXiv:1203.216 GeV/c²)

- Inclusive electrons spectrum with two different PID analyses: TPC-TOF-TRD and TPC-EMCAL
- Cocktail of backgrounds
 - > "photonic" electrons (from γ "conversions"), based on measured π^0 cross section (m_t scaling for other mesons)
 - quarkonium decays, based on LHC data
 - from direct photons (pQCD)
- Inclusive Cocktail: electrons from c and b decays \rightarrow combine the two PID analyses

arXiv:1205.5423

Large suppression in central collisions (x3-4)

Less suppression towards peripheral collisions

The suppression of D mesons is comparable to that of pions

• Heavy-to-light ratio " $R_{D/\pi}$ ": a hint of $R_{AA}^{\nu} > R_{AA}^{\pi}$

- In the model calculations:
 - > High- p_t : $R_{D/\pi}$ > 1 due colour charge effects (c-quark vs gluon)
 - Low-p_t: additional increase to mass effects (c-quark mass)

Melbourne

Comparisons: E-loss models

Several models based on E-loss and heavy-quark transport describe qualitatively the measured charm R_{AA}

- Models with E-loss (radiative, rad. + coll.) generally close to both D and charged RAA
 - Vitev rad + D dissoc

WHDG and CUJET1.0 rad + coll

 Model based on AdS/ CFT Drag oversuppresses charm

- Small effect expected from PDFs shadowing above 5 GeV/c
- Suggests that this is a hot medium effect
- p-Pb run at LHC crucial to measure initial-state effects