The DEPFET pixel vertex detector for the Belle II experiment at SuperKEKB

36th International Conference on High Energy Physics

Stefan Rummel
on behalf of the DEPFET Collaboration

Stefan.Rummel@lmu.de
DEPFET Collaboration

- CNM/IFAE, Barcelona
- Charles University, Prague
- DESY Hamburg
- IFCA Santander
- IFIC Valencia
- IFJ PAN, Krakow
- IHEP, Beijing
- KEK-PF, Tsukuba
- LMU Munich
- TU Munich
- MPI Munich / HLL
- University of Barcelona
- University of Bonn
- University of Heidelberg
- University of Giessen
- University of Göttingen
- University of Karlsruhe

www.depfet.org
• The SuperKEKB project

• The DEPFET concept

• The DEPFET-PXD
 • Mechanical engineering
 • Cooling
 • Module concept
 • Data acquisition

• Outlook
SuperKEKB is the successor of the KEKB accelerator currently holding the world record of integrated luminosity of 1024fb$^{-1}$

- Asymmetric e+/e- collider 10.4GeV @ Y(4S) resonance
- Nano beam option + increased current

Target: 8×10^{35} 1/cm2s, aiming for 50ab$^{-1}$
- Upgrade of data acquisition, trigger and sub detectors
- Inner detector:
 - Silicon strip detector suffers from high occupancy
 - Two layers of pixel detector (PXD)
- Requirements for the PXD:
 - High hit density ~8MHz/cm2
 - Radiation hardness ~ 2 MRad/y
 - Low momentum tracks (<1GeV)
 - Acceptance 17 -155°

→ Goal: Pixel detector should not only withstand the harsh environment but also improve the performance of the inner detector
The DEPFET Active Pixel Detector

Depleted Field Effect Transistor baseline for the BELLE II PXD

- In pixel amplification of charge
- Potential minimum under gate
- Electrons modulate current in FET
- Charge is removed via clear

- Low input capacity
- Fully depleted operation - high sensitive volume
- Charge collection always active

→ DEPFET allows to build low mass, high S/N detector
DEPFET matrix operation

- DEPFET pixel cells arranged on grid
- Readout via rolling shutter mode
 - Select row
 - Read current
 - Reset row

→ Column parallel readout – fast readout
→ Low power dissipation in active area

- Three different ASICS needed:
 - Switcher
 - DCD (Drain Current Digitizer)
 - DHP (Data Handling Processor)

- PXD: frame time 20μs – 92ns row processing time
DEPFET pixel cell development and characterization

- Belle II pixel cell
 - Pixel size $50\mu m^2$, $50\times75\mu m^2$
 - Optimized for
 - Fast charge collection
 - Fast clear

- Test beam characterization
 - Belle pixel cell
 - $50\mu m$ thin DEPFETS
 - 100ns row processing time

→ SNR for MIPs of 20-40
→ Resolution: 12.4µm
DEPFET is developed and produced at MPI - Semiconductor lab (HLL) in Munich:

- Double sided process on high resistivity silicon
- Detectors on wafer scale
- Compatible thinning technology
 - Low multiple scattering
 - Flexible device size

→ PXD baseline: 75 µm – 0.2%X₀
The first DEPFETs on thin substrate
DEPFET module

- All silicon, mechanically self sustained module
- Incorporating all necessary electronics
 - Switcher for control
 - DCDB for digitization and DHP for data processing and transmission
• Tight mechanical constraints:
 • Beampipe @ 12mm radius
 • PXD @ 14/22mm
 • SVD @ 38mm radius

• Design of PXD incorporates:
 • Stable mounting allowing thermal expansion
 • Thermal management
 • Services for power and data transmission and cooling

• Detailed 3d design of the PXD ready
...with real thinned Si ladders

beam pipe support and cable stress relief

mechanical support and CO2 evaporator
Cooling

- 360W power dissipation while operation
 - Dominated by readout ASICs outside of the acceptance
 - Power consumption in active area \(\sim 0.4\text{W/cm}^2 \)

- Active area cooled by cold air

- Modules mounted directly on cooled mounting block
 \(\rightarrow \) Direct thermal contact

- Cooling of PXD demonstrated
On module digitization and zero suppression

- Rate ~4.6Gbit/s (550MB/s) per module @ 3% occupancy
- Would dominate complete BELLE II data

- Online Pattern recognition with the strip detector to identify physics hits
- Further data reduction to 1/30
Performance of the Belle II PXD

- Expected performance including the 4 layer strip detector:

 • PXD in a nutshell:
 - Two layers: at 14,22mm radius
 - Pixel size: 50x50µm², 50x75µm²
 - Thickness: 75µm
 - Material budget: 0.2% X₀
 - Pixel: 8M
 - Radiation hardness: 10MRad
 - Frame time: 20µs

 ➔ DEPFET PXD will significantly improve z-vertex resolution of the inner detector
The SuperKEKB upgrade aims for a peak luminosity of 8×10^{35}/cm2s

A 2 layer pixel detector based on DEPFET will be installed

The PXD will improve the IP resolution even in an environment with significantly increased background

Design of PXD is well advanced

- Pixel cell
- Mechanical design and cooling
- Readout electronics and data acquisition
- Module design

PXD ready by mid 2015
Backup
<table>
<thead>
<tr>
<th>2014</th>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>BEAST 2</td>
<td>Belle Roll-out</td>
<td>Summer Shutdown</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>July 2014</td>
<td>machine ready with QCS</td>
<td>Roll-in GCR Contrac COMP ready by Oct. 1</td>
</tr>
<tr>
<td></td>
<td>Belle roll-in (no TOP/A-RICH/PXD/SVD/CDC)</td>
<td>TOP/RICH/CDC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>VXD Comm.</td>
<td>VXD Physics inst. Run</td>
<td>Summer Shutdown</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
From half-ladder to module

- Half modules must be mechanically connected to form a complete PXD module
- Face to face gluing
- Reinforcement with 3 ceramic inserts
- Resilient to bow up to 1mm and a tension of ~40N
Material budget within acceptance

→ 0.19 %X_0 in total

Silicon contribution (0.15%)
Backgrounds:

- Touschek scattering (intra-bunch scattering)
- Synchrotron radiation
- Beam-gas scattering

- Radiative Bhabha
- 2-photon process generated electrons

- Latest estimate L1/L2: 1.9Mrad/y / 0.6Mrad/y
- Expected PXD occupancy ~0.9%/0.4% inner/outer layer
- Zero suppression on module level
- Online pattern recognition to reject background
- Online silicon only tracking

80Gbit/s
Θ 4Gbit/s
~40cm

4 links @ 1.25Gbit/s