Latest Results from NEMO-3 and Status of SuperNEMO

Karol Lang University of Texas at Austin On behalf of the NEMO Collaboration

Outline:

1. $0\nu\beta\beta$ fundamentals

- 2. NEMO technique
- 3. NEMO-3 results
- 4. Status of SuperNEMO

Fundamentals of $0\nu\beta\beta$ and $2\nu\beta\beta$

$$\frac{1}{T_{1/2}^{2\nu}} = G_{2\nu}(Q_{\beta\beta}^{11}, Z) \bullet \left| M_{2\nu} \right|^2$$

G = phase space (well known) *M* = nuclear matrix element (challenging)

$$\frac{1}{T_{1/2}^{0\nu}} = G_{0\nu}(Q_{\beta\beta}^5, Z) \bullet \left| M_{0\nu} \right|^2 \bullet \left\langle m_{\beta\beta} \right\rangle^2$$

$$\langle m_{\beta\beta} \rangle = |m_1|U_{e1}|^2 + m_2|U_{e2}|^2 e^{i\alpha^*} + m_3|U_{e3}|^2 e^{i\beta^* - 2i\delta}$$

Practical fundamentals

Natural radioactivity and cosmic rays dominate the backgrounds \rightarrow go underground + local shielding ²³⁸U and ²³²Th decay chains produce the most troubling gammas (highest energies): • ²¹⁴Bi • 208TI ²⁰⁸TI (2614 KeV) 2x10⁶ muons/m² day on surface 100000 15 m.w.e 10000 ²³²Th 1000 count rate [1 / (keV kg day)] decay 100 15 m.w.e + shielding chain 10 3300 m.w.e + shielding 0.1 0.01 250 500 0 750 1000 1250 1500 1750 2000 2250 2500 2750 Energy [keV] $26 \,\mathrm{muons/m^2 \, day}$ (Applied Rad and Isotopes 53 (2000) 191)

NEMO-3	Q _{ββ} (MeV)	Natural abundance (%
⁴⁸ Ca→ ⁴⁸ Ti (4.272	0.187
¹⁵⁰ Nd→ ¹⁵⁰ Sm	3.367	5.6
⁹⁶ Zr→ ⁹⁶ Mo	3.350	2.8
¹⁰⁰ Mo→ ¹⁰⁰ Ru	3.035	9.6
⁸² Se→ ⁸² Kr	2.995	9.2
¹¹⁶ Cd→ ¹¹⁶ Sn(2.805	7.5
¹³⁰ Te→ ¹³⁰ Xe (2.529	34.5
¹³⁶ Xe→ ¹³⁶ Ba	2.458	8.9
¹²⁴ Sn→ ¹²⁴ Te	2.228	5.64
⁷⁶ Ge→ ⁷⁶ Se	2.039	7.8
$^{110}Pd \rightarrow ^{110}Cd$	2.013	11.8

Top 11 $\beta\beta$ emitters with $Q_{\beta\beta} > 2$ MeV

Challenge:

- suppress backgrounds
- identify the final state

The NEMO-3 Technique

The multi-observable principle: topology, kinematics, timing

Plastic scintillator calorimeter

Radio-pure materials and a multi-layer shielding

-4

NEMO-3 detector

Fréjus Tunnel : 4,800 m.w.e.

Phase 1: Feb, 2003 \rightarrow Sep, 2004 Phase 2: Oct, 2004 \rightarrow Jan, 2011

✓ <u>Source</u>: 10 kg of $\beta\beta$ isotopic foils area = 20 m², thickness ~60 mg/cm²

✓ <u>Tracking detector</u>:

drift wire chamber (9 layers) in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H₂O

✓ <u>Calorimeter</u>:

1940 plastic scintillators low radioactivity 3" & 5" PMTs

B field : 25 Gauss

✓ <u>Shielding</u>:

gamma shield: pure iron (d = 18cm) neutron shield:

30 cm water (ext. wall)40 cm wood (top / bottom)(since March 2004: water + boron)

6

NEMO-3 data taking: 2003 - 2010

Laboratoire Souterrain de Modane (LSM) (Frejus Tunnel)

1228 m

0 m

Altitudes

Distances

1298

12 868

m

m

NEMO Collaboration

FRANCE

ITALIE

m

m

1263

6210

LAL (Orsay), IPHC (Strasbourg), INL (Idaho Falls), ITEP (Moscow), JINR (Dubna), LPC (Caen), CENBG (Bordeaux), UCL (London), U. of Manchester, Tokushima U., Cornelius U. (Bratislava), Osaka, IEAP & Charles U. (Prague), UAB (Barcelona), Saga U., Imperial College (London), Mount Holyoke Coll. (South Hadley), Fukui U., INR (Kiev), CPPM (Marseilles), U. Warwick, Texas (Austin)

Built for Taup experiment (proton decay) in 1981-1982

NEMO-3: 7 isotopes + events images

lsotope	Mass (g)	$\mathbf{Q}_{\beta\beta}$ (keV)
¹⁰⁰ Mo	6 914	3035
⁸² Se	932	2995
¹¹⁶ Cd	405	2805
⁹⁶ Zr	9.4	3350
¹⁵⁰ Nd	37	3367
⁴⁸ Ca	7	4272
¹³⁰ Te	454	2529
^{nat} Te	491	
^{nat} Cu	621	

- ✓ <u>Trigger</u>: at least 1 PMT > 150 keV
 - \geq 3 Geiger hits (2 neighbouring layers+1)
- \checkmark Trigger rate = 7 Hz
- ✓ 25 $\beta\beta$ events per hour

NEMO-3 backgrounds

2. External background (if the γ is not detected)

(due to radio-impurities of the detector)

- 3. Radon (²¹⁴Bi) inside the tracking detector
 - deposits on the wire near the $\beta\beta$ foil
 - deposits on the surface of the $\beta\beta$ foil

Each bkg is measured using the NEMO-3 data

Signal and background signatures

NEMO-3 flagship measurements $2\nu\beta\beta$ results (not final)

NEMO-3 flagship measurements: ¹⁰⁰Mo and ⁸²Se $0\nu\beta\beta$ results (not final)

[2.8 – 3.2] MeV 18 observed events, 16.4 \pm 1.3 expected

QRPA M.Kortelainen and J.Suhonen, Phys.Rev. C 75 (2007) 051303(R)
 QRPA M.Kortelainen and J.Suhonen, Phys.Rev. C 76 (2007) 024315

[3] QRPA F.Simkovic, et al. Phys.Rev. C 77 (2008) 045503
 [4] IBM2 J.Barrea and F.Iachello Phys.Rev.C 79(2009)044301

 PHFB
 [5]
 P.K. Rath et al., Phys. Rev. C 82 (2010) 064310

 SM
 [6]
 E.Caurrier et al. Phys.Rev.Lett 100 (2008) 052503

⁸²Se (for exposure of 4.2 kg * y)

 $m_{\beta\beta} < 0.94 - 2.6 \text{ eV}$

 $T_{1/2}(0\nu\beta\beta) > 3.2 \times 10^{23} \text{ y} (90\% \text{ C.L.})$

NEMO-3 $2\nu\beta\beta$ results (not final) ¹³⁰Te , Low radon, 3.49 y, TS10 800 NEMO-3 counts / 0.09 MeV Number of events / 0.1MeV Entries 1191 932 g, 160 data = 7636 ${}^{16}Cd 2\nu\beta\beta = 6949 \pm 88$ Data ββ ¹³⁰Te 3.49 y 700 sum of bkgs = 674 ± 15 140 13,719 events Total = 7623 ± 90 Radon 600 E S/B = 4chi2/ndf = 15.1 / 27 Ext bkg 120 ln bka 500 Bi210 100 ⁸²Se 116**Cd** 400 80 130**Te** 300 60 200 40 250 100 20 0 D 1.5 2 2.5 3.5 0 0.5 1 3 0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 2.5 3 $E_1 + E_2$ (MeV) E₁+E₂(MeV) E_{TOT}(MeV) [$2.88 \pm 0.04_{(stat)} \pm 0.16_{(syst)}$] x 10¹⁹ y $[7.0\pm0.9_{(stat)}\pm1.1_{(syst)}] \times 10^{20} \text{ y}$ [9.6 ± 0.1 $_{(stat)}$ ± 1.0 $_{(syst)}$] x 10¹⁹ y 180 160 60 data = 898 counts / 0.15 MeV ≩300 NEMO 3 ¹⁵⁰Nd $2\nu\beta\beta$ ⁹⁶Zr signal = 428 ± 26 48**Ca** 133 events sum of bkgs = 439 \pm 7 50 S/B 6.76 Data (924.7 days) 140 Total MC = 867 ± 27 • Data 2vββ MC Bkg MC 40 967r -2vββ MC Background MC 100 —Total MC 30 80 60 40 Ħ 150Nd 948 days 1221 days 20 100 S/B 0.98 7g 9.41q 10 50 20 0 0.5 **%** 1 1.5 2 2.5 4 4.5 5 E₁ + E₂ (MeV)

 $[2.35 \pm 0.14_{(stat)} \pm 0.16_{(syst)}] \times 10^{19} \text{ y}$ $[9.11^{+0.25}_{-0.22 \text{ (stat)}} \pm 0.63_{\text{(syst)}}] \times 10^{18} \text{ y}$ [4.4 ^{+0.5}_{-0.4 (stat)}± 0.4 _(syst)] x 10¹⁹ y Karol Lang (University of Texas at Austin) Results from NEMO-3 and status of SuperNEMO, ICHEP 2012, Melbourne, July 5, 2012

1.5

3.5 E_1 + E2 (MeV) З 3.5

13

3.5 4 Е_{тот}(MeV)

3

2 2.5

0.5

1

1.5

NEMO-3 → SuperNEMO

20 wedges: 10 kg of 7 isotopes

20 planar modules, each w/ 5-7 kg Can do different isotopes & locations

Karol Lang (University of Texas at Austin) Results from NEMO-3 and status of SuperNEMO, ICHEP 2012, Melbourne, July 5, 2012

SuperNEMO R&D and Demonstrator construction

- First SuperNEMO module (Demonstrator) under construction (through 2014)
- (Most of) R&D completed; optimizing costs, some systems under full production
- Major improvements in:

energy resolution, source foil radio-purity measurements, radon emanation and hermeticity, source installation, ²⁰⁷Bi calibration, tracking, software, ...

Some highlights below:

SuperNEMO Demonstrator construction

- BiPo detector to test
 the source foil radio-purity
- Sensitivity in 6 months
 - ²⁰⁸TI: ~ 5 μ Bq / kg
 - $^{214}Bi: \sim 15 \mu Bq / kg$
- Will operate at the Canfranc Lab

$Bi \rightarrow Po \rightarrow Pb$

(2)

SuperNEMO Demonstrator construction

Tracker construction

(automatic wiring)

He-Ar (w/ isoprop.) or He-Ne (w/ isoprop.)

(3)

SuperNEMO Demonstrator construction

18

(4)

Material radon emanation screening

Radon concentration line (sensitivity < 0.15 mBq/m³)

Summary

NEMO-3 produces a unique spectrum of results on $0\nu\beta\beta$ and $2\nu\beta\beta$

- ✓ Results for 5 other isotopes: ⁴⁸Ca, ⁹⁶Zr, ¹¹⁶Cd, ¹³⁰Te, ¹⁵⁰Nd
- ✓ Testing transitions models: excited states, V+A, Majorons, SSD, HSD, ...
- \checkmark Stay tuned for results with final samples

SuperNEMO (Demonstrator in 2014)

 \checkmark ⁸²Se; sensitivity: $T_{1/2}(0\nu\beta\beta) = (1-2) \times 10^{26} \text{ y} (500 \text{ kg*y exposure}) \rightarrow m_{\beta\beta} \le 40 - 140 \text{ meV}$

NEMO Collaboration, Chateau d'Yquem, June'2012

BACKUP SLIDES FOR NEMO-3 & SUPERNEMO

Summary of $2\nu\beta\beta$ NEMO-3 results

(1) R. Arnold et al., Phys. Rev. Lett. 95 182302 (2005)

(2) J. Argyriades et al., Phys. Rev. C 80, 032501R (2009)

- (3) R. Arnold et al., PRL 107, 062504 (2011)
- (4) J. Argyriades et al., Nucl. Phys. A 847, 168 (2010)

Phase 1: Feb, 2003 → Sep, 2004 Phase 2: Oct, 2004 → Jan, 2011

Summary of $0\nu\beta\beta$ NEMO-3 results

Isotope	Exposure	Τ _{1/2} (0νββ)	$\langle m_v \rangle$	NME
	[kg·y]	[years]	[eV]	reference
¹⁰⁰ Mo	31.2	> 1.0 · 10 ²⁴	< 0.31 - 0.96	2-5,8
⁸² Se	4.2	> 3.2 · 10 ²³	< 0.94 - 1.6	1,3-5,8
			< 2.6	7
¹⁵⁰ Nd	0.095	> 1.8 · 10 ²²	< 1.5 – 6.8	4-6,8
¹³⁰ Te	1.6	> 1.3 · 10 ²³	< 1.3 – 2.7	2-5,8
			< 3.6	7
¹¹⁶ Cd	1.65	> 1.3 · 10 ²³	< 1.3 – 3.2	2-5,8
⁹⁶ Zr	0.031	> 9.2 · 10 ²¹	< 7.2 – 19.5	2-5,8
⁴⁸ Ca	0.017	> 1.3 · 10 ²²	< 29.6	7

Nuclear Matrix Elements references:

[1] M.Kortelainen and J.Suhonen, Phys.Rev. C 75 (2007) 051303(R)
 [2] M.Kortelainen and J.Suhonen, Phys.Rev. C 76 (2007) 024315

[3] F.Simkovic, et al., Phys.Rev. C 77 (2008) 045503

[4] V.A. Rodin et al., Nucl.Phys. A 793 (2007) 213

[5] V.A. Rodin et al., Nucl.Phys. A 766(2006) 107
[6] J.H.Hirsh et al., Nucl.Phys. A 582(1995) 124
[7] E.Caurrier et al., Phys.Rev.Lett 100 (2008) 052503
[8] P.K. Rath et al., Phys. Rev. C 82 (2010) 064310

⁸²Se Sensitivity ($0\nu\beta\beta$)

25

NEMO-3: $\beta\beta$ of ¹⁰⁰Mo to excited states

NEMO-3 - other physics

	V+A *	Majoron(s) emission (n=spectral index)**			
	T _{1/2} (0vββ)	n=1	n=2	n=3	n=7
	[years]				
¹⁰⁰ Mo	>5.7·10 ²³	>2.7·10 ²²	>1.7·10 ²²	>1·10 ²²	>7·10 ¹⁹
	λ<1.4·10 ⁻⁶	g _{ee} <(0.4-1.8)·10 ⁻⁴			
⁸² Se	>2.4·10 ²³	>1.5·10 ²²	>6·10 ²¹	>3.1·10 ²²	>5·10 ²⁰
	λ<2.·10⁻ ⁶	g _{ee} <(0.7-1.9)·10 ⁻⁴			

* Phase 1+Phase 2 data

Phase 1 data, R. Arnold et al. Nucl. Phys. A765 (2006) 483

Neutrinoless double beta decay

NEMO-3 → SuperNEMO

28

 $T_{1/2}^{0\nu}(n_{\sigma}) = \frac{4.16 \times 10^{26} y}{\varepsilon a}$ n_{σ} $b\Delta E$

- n_{σ} number of std. dev. for a given C.L. M total mass of the source (kg)
- *a* isotopic abundance
- ε detection efficiency
- W molecular weight of the source
- t time of data collection (y)
- b background rate in counts (keV · kg · y)
- ΔE energy resolution (keV)

NEMO-3	R&D since 2005	SuperNEMO
¹⁰⁰ Mo	isotope	⁸² Se (maybe also ¹⁵⁰ Nd or ⁴⁸ Ca)
7 kg	mass	100 kg
A(²⁰⁸ TI) < 20 μBq/kg A(²¹⁴ Bi) < 300 μBq/kg Rn ~ 5-6 mBq/m ³	Radio-purity of the foil Radon in the tracker	A(²⁰⁸ TI) < 2 μBq/kg A(²¹⁴ Bi) < 10 μBq/kg Rn < 0.1 mBq/m³
8%	efficiency	30%
8% FWHM @ 3 MeV	Energy resolution	4% FWHM @ 3 MeV
$T_{1/2}(0\nu\beta\beta) > 2 \times 10^{24} \text{ y}$ $< m_n > < 0.3 - 0.8 \text{ eV}$	sensitivity	T _{1/2} (0vββ) > 1 x 10 ²⁶ y <m<sub>n> < 40 – 100 meV</m<sub>
1 module	modularity	>20 modules (new lab)

Karol Lang (University of Texas at Austin) Results from NEMO-3 and status of SuperNEMO, ICHEP 2012, Melbourne, July 5, 2012

Improved simulations and tracking

Karol Lang (University of Texas at Austin) Results from NEMO-3 and status of SuperNEMO, ICHEP 2012, Melbourne, July 5, 2012

Phenomenology of 0νββ and 2νββ (1)

$$\frac{1}{T_{1/2}^{2\nu}} = G_{2\nu}(Q_{\beta\beta}^{11}, Z) \bullet \left| M_{2\nu} \right|^2$$

G = phase space (well known) *M* = nuclear matrix element (challenging)

$$\frac{1}{T_{1/2}^{0\nu}} = G_{0\nu}(Q_{\beta\beta}^5, Z) \bullet \left| M_{0\nu} \right|^2 \bullet \left\langle m_{\beta\beta} \right\rangle^2$$

$$\langle m_{\beta\beta} \rangle = |m_1|U_{e1}|^2 + m_2|U_{e2}|^2 e^{i\alpha^*} + m_3|U_{e3}|^2 e^{i\beta^* - 2i\delta}$$

Phenomenology of 0νββ and 2νββ (1)

$$\frac{1}{T_{1/2}^{2\nu}} = G_{2\nu}(Q_{\beta\beta}^{11}, Z) \bullet \left| M_{2\nu} \right|^2$$

G = phase space (well known) *M* = nuclear matrix element (challenging)

$$\frac{1}{T_{1/2}^{0\nu}} = G_{0\nu}(Q_{\beta\beta}^5, Z) \bullet \left| M_{0\nu} \right|^2 \bullet \left\langle m_{\beta\beta} \right\rangle^2$$

$$\langle m_{\beta\beta} \rangle = |m_1|U_{e1}|^2 + m_2|U_{e2}|^2 e^{i\alpha^*} + m_3|U_{e3}|^2 e^{i\beta^* - 2i\delta}$$

Phenomenology of $0\nu\beta\beta$ and $2\nu\beta\beta$ (2)

$$\frac{1}{T_{1/2}^{2\nu}} = G_{2\nu}(Q_{\beta\beta}^{11}, Z) \bullet \left| M_{2\nu} \right|^2$$

$$\frac{1}{T_{1/2}^{0\nu}} = G_{0\nu}(Q_{\beta\beta}^5, Z) \bullet \left| M_{0\nu} \right|^2 \bullet \left\langle m_{\beta\beta} \right\rangle^2$$

G = phase space (well known) *M* = nuclear matrix element (challenging)

$$\langle m_{\beta\beta} \rangle = |m_1|U_{e1}|^2 + m_2|U_{e2}|^2 e^{i\alpha^*} + m_3|U_{e3}|^2 e^{i\beta^* - 2i\delta}$$

 α^*, β^* = linear combinations of α and β

Practical matters

NEMO-3	${\sf Q}_{{\scriptscriptstyleeta}{\scriptscriptstyleeta}}$ (MeV)	Natural abundance (%
⁴⁸ Ca→ ⁴⁸ Ti	4.272	0.187
$^{150}Nd \rightarrow ^{150}Sm$	3.367	5.6
⁹⁶ Zr→ ⁹⁶ Mo	3.350	2.8
$^{100}Mo \rightarrow ^{100}Ru$	3.035	9.6
⁸² Se→ ⁸² Kr	2.995	9.2
¹¹⁶ Cd→ ¹¹⁶ Sn (2.805	7.5
¹³⁰ Te→ ¹³⁰ Xe (2.529	34.5
¹³⁶ Xe→ ¹³⁶ Ba	2.458	8.9
¹²⁴ Sn→ ¹²⁴ Te	2.228	5.64
⁷⁶ Ge→ ⁷⁶ Se	2.039	7.8
$^{110}\text{Pd}{\rightarrow}^{110}\text{Cd}$	2.013	11.8

Top 11 $\beta\beta$ emitters with $Q_{\beta\beta}$ > 2 MeV

"Probing new physics models of neutrinoless double beta decay with SuperNEMO"; R. Arnold et al., Eur. Phys. Jr. C DOI 10.1140/epjc/s10052-010-1481-5

Fig. 11 (Color online) Constraints at one standard deviation on the model parameters m_{ν} and λ for ⁸²Se from: (1) an observation of $0\nu\beta\beta$ decay half-life at $T_{1/2} = 10^{25}$ y (*outer blue elliptical contour*) and 10^{26} y (*inner blue elliptical contour*); (2) reconstruction of the angular (outer, lighter green) and energy difference (inner, darker green) distribution shape; (3) combined analysis of (1) and (2) using decay rate and

energy distribution shape reconstruction (*red contours*). The admixture of the MM and RHC_{λ} contributions is assumed to be: a pure MM contribution; b 30% RHC_{λ} admixture; and c pure RHC_{λ} contribution. NME uncertainties are assumed to be 30% and experimental statistical uncertainties are determined from the simulation

BiPo-3 sensitivity

Assuming: ⁸²Se foil 40 mg/cm² Total surface BiPo-3 = 3.6 m² Energy threshold = 100 keV for prompt and delay signals ($\epsilon \sim 5\%$)

SuperNEMO demonstrator:

> Foils 270×13.55 cm², 8 foils installed in BiPo-3 \Rightarrow Total surface = 2.93 m²

efficiency reduced by 2.9/3.6 = 20%

> If thickness = 53 mg/cm^2

efficiency reduced by 40/53 = 25%

Cadmium Foil Activity and Hot Spots

Background: control channels

Example: eγ control channel

150-Nd foil

Karol Lang (University of Texas at Austin) Results from NEMO-3 and status of SuperNEMO, ICHEP 2012, Melbourne, July 5, 2012

³ Ε_γ[MeV]

SuperNEMO Demonstrator module

« Calorimeter square design »

NEMO-3 detector

Fréjus Underground Laboratory : 4800 m.w.e.

Source: 10 kg of $\beta\beta$ isotopic foils area = 20 m², thickness ~ 60 mg/cm²

Tracking detector:

drift wire chamber operating (9 layers) in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H₂O

<u>Calorimeter</u>: 1940 plastic scintillators coupled to low radioactivity PMTs

Magnetic field: Gamma shield: Neutron shield:

25 Gauss pure iron (d = 18cm) 30 cm Water (ext. wall) 40 cm Wood (top and bottom) (since March 2004: water + boron)

Radon Trapping Facility

- Radon trapping facility installed in September 2004.
- The trapping time in activated charcoal longer than ²²²Rn half-life of 3.8 days.
- Radon level reduced by almost factor of 10 in the detector by installing radon trapping facility

Adsorption unit @-50°C

Input: A(²²²Rn) 15 Bq/m³

Output: A(²²²Rn) < 15 mBq/m³ !! reduction factor of 1000

Phase 1 versus Phase 2 backgrounds

Phase 1 backgrounds

Phase 2 backgrounds

Main wall calorimeter simulations

 Visualization of a GEANT-4 simulation of of a main wall calorimeter block (left), and diagram showing simulated resolution by electron entrance position on the block surface (right).

45

All simulated values are in agreement with measurements.

 Visualization and resolutions by electron entry position for X-wall (left) and V-wall (right) calorimeter blocks.

Measured positional values are in parenthesis; no such values are available for the V-wall blocks.

Perennial problem – natural radioactivity

Thorium and radon are diffusive radioactive isotopes out-gased into the air from the rock.

47

Karol Lang (University of Texas at Austin) Neutrino Physics without Neutrinos, Villa Olmo, Como, October 6, 2011