A new intense DC muon beam from a pion capture solenoid, MuSIC

Yuko Hino

Y. Kuno, A. Sato and MuSIC collaborations
Osaka University

ICHEP2012 Melbourne, Australia 7/7/2012

Outline

- ▶ Motivation
- ▶About MuSIC
 - What's MuSIC?
 - New pion capture solenoid system
 - Collection dipole field
 - Schedule
- MuSIC beam tests
 - Estimation of muon yield
- Summary

Motivation ~muon science~

Particle Physics

- search for charged lepton flavor voilation

$10^{8-9} \mu + / sec$

Nuclear Physics

nuclear muon capture

- pion capture and scattering

$10^{5-6} \mu^{-}/\text{sec}$

Chemistry

- chemistry on pion/muon atoms

$10^{5-6} \mu^{-}/\text{sec}$

Material Science

 $-\mu SR$

$10^{5-6} \mu^{-}/\text{sec}$ (polarized)

Accelerator / Instruments R&D

- Superconducting solenoid magnet
- FFAG, RF
- cooling methods
- muon collider etc...

- muon acceleration, deceleration and phase rotation

High intense muon beam source is needed!

What is the MuSIC?

MuSIC

- The DC muon beam source being constructed in RCNP, Osaka univ.
 - Design muon intensity:
 - $10^{8-9}\mu$ /s @392MeV, 1μ A proton beam
 - 400W proton beam from RCNP ring cyclotron
 - The world's highest muon collection efficiency (>10³ than conventional muon beam line)

Technical points

- The first pion capture solenoid system
- A muon transport solenoid with collection dipole field
 - possible to select the momentum / charge of muons

Muon Collection System

To downstream experiments (proton beam loss < 5-10%)

Comparison

	MuSIC	J-PARC	PSI
	(JAPAN)	(JAPAN)	(Switzerland)
Beam power	0.4 kW	1000 kW	1200 kW
Muon intensity	10 ⁸ -10 ⁹ /sec	~10 ⁸ /sec	10 ⁸ -10 ⁹ /sec
Muon production efficiency	10 ⁵ ~10 ⁶ /sec/W	~10 ² /sec/W	10 ² ~10 ³ /sec/W
Time structure	continuous	pulsed (25Hz)	continuous
Beam polarization	medium (to be studied)	high	high
Multiple use	only 1 channel	many channels	many channels

Japan will be the only country which bas both DC and pulsed muon beam facilities.

Momentum / charge selection by solenoid field

- O In transport solenoids, charged particles moves helically.
- O If solenoid is bended, the center of helical movement drifts perpendicular to the bending plane.

Distance of drift:
$$D = \frac{p}{qB} \theta_{bend} \frac{1}{2} (\cos \theta + \frac{1}{\cos \theta})$$

O If there is additional dipole field (=Dipole magnet) which is perpendicular to the bending plane, the center of helical motion is compensated. (it depends on the momentum and charge of the beam)

Dipole magnet:
$$B_y = \frac{p}{qr} \frac{1}{2} (\cos \theta + \frac{1}{\cos \theta})$$

p : Momentum of the particle

q: Charge of the particle

B: magnetic field

 $\theta_{\, \rm bend}$: Bending angle of the transport solenoid

$$\theta = \operatorname{atan}(p_T/p_L)$$

Muon beam from MuSIC

Simulation by g4beamline, QGSP_BERT

····· Position distribution @ transport solenoid 36° exit ·····

Final Layout of MuSIC

Schedule

10

MuSIC @RCNP, (~2012 Feb)

History of MuSIC Project

2009 JPY -----

- Construction of a proton beam line, pion capture system and transport solenoid (up to 36 degree)

2010 JPY -----

1st beamtest ··· checked that every system worked successfully 2nd beamtest ··· muon lifetime measurement

2011 JPY -----

3rd beamtest … muon lifetime measurement with higher statistics muonic X-ray measurement

4th beamtest … muonic X-ray measurement with higher statistics measurement of neutron flux and energy

- Radiation shielding block were located

2012 JPY-----

5th beamtest \cdots measurement of energy and spatial distributions Just finished! operate systems with proton beam current $1 \mu A$

MuSIC beam test

Measurement of

```
- Muon lifetime \mu^+ and \mu^- yield
```

- Muonic X-rays $\cdots \mu$ yield

with small proton beam current (~500pA)

 \rightarrow Estimate the muon yield with 1 μ A proton beam

Setup of MuSIC beam test

Results of Beamtest

Muon Lifetime

Muonic X-ray

	Beamtest	Simulation
Number of μ + [μ /sec/ μ A]	2×10 ⁸	3×10 ⁸
Number of μ^- [μ /sec/ μ A]	(1.7±0.3)×10 ⁸	1.4×10 ⁸

The measured muon yield are consistent with simulation results!

Summary

- MuSIC is a high intense DC muon beam facility at RCNP, Osaka Univ.
- ▶ Using the first pion capture solenoid system, MuSIC can achieve the highest muon collection efficiency in the world.
- ▶ By measurement of muon lifetime and muonic X-rays at MuSIC, we estimated muon yield and confirmed that systems work well as designed, at a point of muon yield.
- MuSIC has made experimental demonstration of the pion capture system, which would make future muon particle physics experiments possible.

Backup slides

Trigger counters (in 5th beamtest)

	S1 (Upstream)	S2 (Downstream)	
Material	Plastic scintillator		
Size	30mm×380mm	50mm×380mm	
Thickness	0.5mm	10mm	
Light collection	Fiber	Light guide	
Readout	MPPC		
Sensitive area	1.3mm×1.3mm	3mm×3mm	

Readout…MPPC

- Usable with low voltage(~70V)
 and at room temperature
- Not affected by magnetic field

MPPC

μ yield vs. beam current

From the results of muonic X-ray measurement

 μ^- yield increase linearly to the beam current, so we can estimate the value at high current.

Momentum distribution

Momentum [MeV/c]

Muon beam from MuSIC

Simulation by g4beamline, QGSP_BERT

..... Momentum distribution

MuSIC @RCNP, Osaka Univ.

- A proton beam with 392MeV (=1 μ A) is provided from the Ring Cyclotron (up to 5 μ A in near future).
- MuSIC is in the largest experimental hall (the west experimental hall).

Muon facility in Japan

