D⁺ Leptonic and D⁰ Semileptonic Decays First Results from BESIII

Ron Poling

School of Physics and Astronomy
College of Science and Engineering
University of Minnesota

36th International Conference on High Energy Physics

4 - 11 July 2012
Melbourne Convention and Exhibition Centre

Window on Weak and Strong Physics

Leptonic Decay

- Decay constant f_D incorporates the strong interaction effects (wave function at the origin)
- Use charm leptonic decays to validate theory (LQCD) and apply to B mixing, which requires f_B
- Multiple tests with charm: f_D , f_{Ds} (esp. ratios)
- Sensitivity to New Physics

Window on Weak and Strong Physics

Semileptonic Decay

- Use Strong Interaction theory (LQCD) for form factor, extract CKM
- Use other measurements and unitarity for CKM and test theory
- Theoretical uncertainties can be reduced in determinations of $|V_{ub}|$ if FF calculations can be validated with charm
- Multiple tests available, semileptonic D decays to pseudoscalar mesons are cleanest

Window on Weak and Strong Physics

- Widths of mixing and $|V_{ub}|$ bands will be reduced as charm validates LQCD
- Long-term goal: Over-constrain CKM and search for New Physics

Charm Physics at Threshold

- At $\psi(3770)$ charm production is $D^0 \bar{D}^0$ and $D^+ D^-$
- Fully reconstruct about 15% of D decays

$$DE = E_D - E_{\text{Beam}}$$

$$M_{\text{BC}} = \sqrt{E_{\text{Beam}}^2 - p_D^2}$$

• Hadronic tag on one side gives "beam" of D^0 or D^+ on the other side for leptonic/semileptonic studies. Neutrino is reconstructed from missing energy and momentum

BESIII at **BEPCII**

- Comparable capabilities to CLEO-c, plus muon ID
- The big advantage: BEPCII is a two-ring machine designed for charm
 - Design (achieved) luminosity at $\psi(3770)$: 1 (0.65) x 10^{33}

BESIII Data

World's largest ψ(3770) sample

 Tools/techniques for precision charm physics still under development – all results are PRELIMINARY

 $-D^+ \rightarrow K^0 (\rho^0) e^+ n$ analysis is "partially blind" -0.92 fb^{-1} analyzed so far. Full 2.9 fb⁻¹ later for final results

$D^+ \rightarrow m^+ n$ - Tag Selection

 Nine D⁻ tag modes

$$K^{+}\rho^{-}\rho^{-}$$
 $K^{0}\rho^{-}$ $K^{0}K^{-}$ $K^{+}K^{-}\rho^{-}$ $K^{+}\rho^{-}\rho^{-}\rho^{0}$ $\rho^{+}\rho^{-}\rho^{-}$ $K^{0}\rho^{-}\rho^{0}$ $K^{+}\rho^{-}\rho^{-}\rho^{-}\rho^{+}$ $K^{0}\rho^{-}\rho^{-}\rho^{+}$

 $= (1.566 \pm 0.002)^{-1} 10^{6} \text{ in } 2.9 \text{ fb}^{-1} \text{ BESIII Preliminary}$ **N**tag

$D^+ \rightarrow m^+ n$ - Signal Selection

- Exactly one track in addition to tag, with the right charge
- Positive muon identification
- No extra photon
- Select on consistency with leptonic decay:

$$M_{\text{miss}}^2 = \left(E_{\text{Beam}} - E_{\text{m}} \right)^2 - \left(-\vec{p}_{\text{tag}} - \vec{p}_{\text{m}} \right)^2 \gg 0$$

425 signal candidates: small BG, mom. dist. consistent with $D^+ \rightarrow m^+ n^-$

$D^+ \rightarrow m^+ n$ - Sample Events

 Positive muon ID requirement reduces background at the expense of a ~20% efficiency loss

$D^+ \rightarrow m^+ n$ - Backgrounds

MC BG est.: 47.7 ± 2.6

Indep. data est.: 48.9 ± 4.8

BESIII Preliminary

Numbers of background events from $D\bar{D}$ decays				
Source	N_{bkg}^{MC}	Scale factor f	$N_{bkg}^{data} = rac{N_{bkg}^{MC}}{f} imes rac{\eta^{data}}{\eta^{MC}}$	
$D^+ o K_L^0 \pi^+$	111	10.8	$7.9\pm0.8\pm0.3$	
$D^+ \to \pi^+ \pi^0$	53	10.8	$3.8\pm0.5\pm0.3$	
$D^+ \to \tau^+ \nu_\tau$	96	10.8	$6.9\pm0.7\pm0.3$	
Other D decays	250	10.8	$17.9 \pm 1.1 \pm 0.5$	
Sum	510	10.8	$36.4 \pm 1.6 \pm 0.7$	
Numbers of background events from $non - D\bar{D}$ decays				
Source	N_{bka}^{MC}	Scale factor f	$N_{bka}^{data} = \frac{N_{bkg}^{MC}}{f} \times \frac{\eta^{data}}{r^{MC}}$	

Source	N_{bkg}^{MC}	Scale factor f	$N_{bkg}^{data} = rac{N_{bkg}^{MC}}{f} imes rac{\eta^{data}}{\eta^{MC}}$
$e^+e^- o (\gamma)\psi(3686)$	2	6.3	$0.2\pm0.2\pm0.0$
$e^+e^- o (\gamma)J/\psi$	0	5.7	$0.0\pm0.0\pm0.0$
$e^+e^- o Light\ Hadron$	33	3.1	$8.2\pm1.4\pm0.3$
$e^+e^- \to \tau^+\tau^-$	15	6.0	$1.9 \pm 0.5 \pm 0.4$
$\psi(3770) o non - D\bar{D}$	7	5.8	$0.9\pm0.4\pm0.9$
Sum			$11.3\pm1.6\pm1.0$
Total (D decay and non - D decay)			$47.7 \pm 2.3 \pm 1.3$

Event type	Number	
$N(D^+ \to \mu^+ \nu_\mu)^{\rm candidate}$	425	
$N_{ m b}$	$47.7 \pm 2.3 \pm 1.3$	
$N(D^+ o \mu^+ u_\mu)$	$377.3 \pm 20.6 \pm 2.6$	

BESIII Preliminary

$$N(D^+ \rightarrow m^+ n) = 377.3 \pm 20.6$$

$$\mathcal{B}(D^+ \to \mu^+ \nu) = (0.0374 \pm 0.0021 \pm 0.0006)\%$$

$$f_{D^{+}} = (203.9 \pm 5.7 \pm 2.0) \text{ MeV}$$

- Excellent agreement with CLEO-c
- Still statistics limited need more data!

$D^+ \rightarrow m^+ / \gamma$ - Comparisons (from G. Rong)

$D^0 o K^-(p^-)e^+n_e^-$ - Tag Selection

• Four *D*⁰ tag modes

$$K^{-}p^{+}$$
 $K^{-}p^{+}p^{0}$
 $K^{-}p^{+}p^{0}p^{0}$ $K^{-}p^{+}p^{+}p^{-}$

$D^0 o K^-(p^-)e^+n_e^-$ - Signal Selection

- Tag plus exactly two oppositely-charged tracks
- Kaon/pion/electron ID
- Electron has right charge
- No extra neutral energy
- Select on consistency with semileptonic decay

$$U = E_{\text{miss}} - |\vec{P}_{\text{miss}}| \gg 0$$

Fit *U* distribution to extract yield

$$D^0 o K^-(p^-)e^+n_e^-$$
 - Branching Fraction

$$B_{sig} = \frac{N_{sig}^{obs}}{\sum_{\alpha} N_{tag}^{obs,\alpha} \epsilon_{tag,sig}^{\alpha} / \epsilon_{tag}^{\alpha}}$$

BESIII Preliminary

Mode	measured branching fraction(%)	PDG	$_{ m CLEOc}$
$\bar{D^0} \rightarrow K^+ e^- \bar{\nu}$	$3.542 \pm 0.030 \pm 0.067$	3.55 ± 0.04	$3.50 \pm 0.03 \pm 0.04$
$\bar{D^0} \rightarrow \pi^+ e^- \bar{\nu}$	$0.288 \pm 0.008 \pm 0.005$	0.289 ± 0.008	$0.288 \pm 0.008 \pm 0.003$

- Systematic uncertainties are preliminary
- Good consistency with CLEO-c, statistical precision is comparable with only 1/3 data analyzed

$D^0 \rightarrow K^-(p^-)e^+n_e^- - q^2$ distribution

• Partition D^0 semileptonic candidates in bins of

$$q^2 = (E_n + E_e)^2 - |\vec{p}_n + \vec{p}_e|^2$$
 with $E_n = E_{\text{miss}}$ $|\vec{p}_n| = E_{\text{miss}}$

• Fit U distribution in each q^2 bin

$D^0 o K^-(p^-)e^+n_e^-$ - Project $f(q^2)$

- Points are data with statistical errors only
- Curves are Fermilab/MILC (arXiv:1111.5471) with ±1σ (statististical) bands

5 July 2012 Ron Poling - ICHEP 2012 18

$D^0 \to K^-(p^-)e^+n_e^-$ - FF Parameterizations

Simple Pole Model

$$f_{+}(q^{2}) = \frac{f_{+}(0)}{\left(1 - \frac{q^{2}}{m_{H^{*}}^{2}}\right)}$$

Modified Pole Model

Becirevic and Kaidalov PLB 478, 417 ('00)

$$f_{+}(q^{2}) = \frac{f_{+}(0)}{\left(1 - \frac{q^{2}}{m_{H^{*}}^{2}}\right)\left(1 - \frac{q^{2}}{m_{H^{*}}^{2}}\right)}$$

Series Expansion

Becher and Hill PLB 633, 61 ('06)

$$f_{+}\left(q^{2}\right) = \frac{1}{P\left(q^{2}\right)f\left(q^{2},t_{0}\right)} \sum_{k=0}^{\infty} a_{k}\left(t_{0}\right) \left[z\left(q^{2},t_{0}\right)\right]^{k}$$

$$z(q^{2},t_{0}) = \frac{\sqrt{t_{+} - q^{2}} - \sqrt{t_{+} - t_{0}}}{\sqrt{t_{+} - q^{2}} + \sqrt{t_{+} - t_{0}}} \qquad t_{\pm} = (m_{D} \pm m_{X})^{2}$$

19

$D^0 \rightarrow K^-(p^-)e^+n_e^-$ - FF Fits

$D^0 \to K^-(p^-)e^+n_e^-$ - FF Results

Simple Pole	$f_+(0) V_{cd(s)} $	m_{pole}	
$D^0 \to Ke\nu$	$0.729 \pm 0.005 \pm 0.007$	$1.943{\pm}0.025{\pm}0.003$	
$D^0 \to \pi e \nu$	$0.142 \pm 0.003 \pm 0.001$	$1.876{\pm}0.023{\pm}0.004$	
Modified Pole	$f_+(0) V_{cd(s)} $	α	
$D^0 o Ke \nu$	$0.725 \pm 0.006 \pm 0.007$	$0.265{\pm}0.045{\pm}0.006$	
$D^0 o \pi e \nu$	$0.140\pm0.003\pm0.002$	$0.315{\pm}0.071{\pm}0.012$	
2 par. series	$f_+(0) V_{cd(s)} $	r_1	
$D^0 \to Ke\nu$	$0.726\pm0.006\pm0.007$	$-2.034\pm0.196\pm0.022$	
$D^0 \to \pi e \nu$	$0.140\pm0.004\pm0.002$	$-2.117 \pm 0.163 \pm 0.027$	
3 par. series	$f_+(0) V_{cd(s)} $	r_1	r_2
$D^0 o Ke u$	$0.729\pm0.008\pm0.007$	$-2.179\pm0.355\pm0.053$	4.539±8.927±1.103
$D^0 \to \pi e \nu$	$0.144 \pm 0.005 \pm 0.002$	$-2.728 \pm 0.482 \pm 0.076$	4.194±3.122±0.448

BESIII Preliminary

 Reasonable consistency with CLEO-c, comparable precision with 2/3 of data still to analyze

Future Charm Prospects at BESIII

- Finalize $D^+ \to m^+ n_m$ and $D^0 \to K^- (p^-) e^+ n_e$ on the 2.9 fb⁻¹ ψ (3770) sample
- Extend to $D^+ \to K^0(\rho^0)e^+ n_e$ and other modes
- Highlights of coming data runs:

```
2012-2013 E_{CM}=4260 and 4360 MeV for "XYZ" studies (0.5 fb<sup>-1</sup> each)
```

2013-2014
$$E_{CM}$$
=4170 MeV for D_s (~2.4 fb⁻¹)

TBD Additional ψ (3770) data

Summary and Conclusions

First results from the BESIII experiment have been presented on

− D⁺ Leptonic Decays

– D⁰ Semileptonic Decays

BESIII Preliminary $N(D^{+} \to \mu^{+} \nu) = 377.3 \pm 20.6$ $\mathcal{B}(D^{+} \to \mu^{+} \nu) = (0.0374 \pm 0.0021 \pm 0.0006)\%$ $f_{D^{+}} = (203.9 \pm 5.7 \pm 2.0) \text{ MeV}$

BESIII Preliminary
$$\mathcal{B}(D^0 \to K^+ ev) = (3.542 \pm 0.030 \pm 0.067)\%$$

$$\mathcal{B}(D^0 \to \pi^+ ev) = (0.288 \pm 0.008 \pm 0.005)\%$$

$$\frac{\Delta \Gamma}{\Delta q^2} \text{ distributions } \to \text{ FF fits, parameters}$$

 BESIII has arrived for precision charm physics, with more data and more measurements to come