Physics @ NICA, JINR

<u>V.Kekelidze,</u> A.Kovalenko, R.Lednicky, V.Matveev, I.Meshkov, A.Sorin, G.Trubnikov

XXXVI International Conference on High Energy Physics, 4-11 July, Melbourne, Australia

Veksler & Baldin Laboratory of High Energy Physics, JINR

Main targets of "NICA Complex":

- study of hot and dense baryonic matter

& nucleon spin structure, polarization phenomena

- development of accelerator facility for HEP @ JINR providing intensive beams of relativistic ions from p to Au polarized protons and deutrones with max energy up to $\sqrt{S_{NN}} = 11 \text{ GeV} (Au^{79+})$ and =26 GeV (p)

existing & future HEP experimental facility — of Joint Institute for Nuclear Research

Nuclotron-M -> NICA	NICA Collider	NICA Collider
(SC synchrotron)	the 1-st IP	the 2-nd IP
extracted beams	(2017)	(2017)
Barionic Matter	MultiPurpose Detector	open for
@ Nuclotron (2015)	(2017)	proposals
 Gibs–NIS (FS) Faza-3 polarized beams & target test beams beams for applied researches 	approved, in preparation running experiments	
6 July 2012	V.Kekelidze, ICHEP-2012, M	elbourne 5

Bld. 205 (10 000 m²): structure of research zones with extracted beams

6 July 2012

QCD phase diagram - Prospects for NICA

Energy Range of NICA

unexplored region of the QCD phase diagram:

- Highest net baryonic density
- Onset of deconfinement
 & phase transition
- Discovery potential:
 a) Critical End Point (CEP)
 b) Chiral Symmetry
 Restoration
- Complementary to the RHIC/BES, FAIR, CERN experimental programs

NICA facilities provide unique capabilities for studying a variety of phenomena in a large region of the phase diagram

6 July 2012

Freeze-out conditions

Existing & Future HI Machines

beams extracted from Nuclotron-M-NICA

covers the gap between SIS-18 and AGS (with some overlaps)

	Z/A	max √s _№ (GeV/n)	max. T_{kin} (GeV/n)
p	1	≈ <mark>5.2</mark>	≈ 12
d	1/2	≈ <mark>3.8</mark>	≈ <mark>5.7</mark>
_		(in	cluding polarized deuterons)
Au	0.4	≈ 3.5	≈ 4.5

These allow:

- study of dense baryonic matter at temperatures up to 100 MeV,
- (multi)-strangeness (open & hidden) production

in dense baryonic matter,

modification of particle properties in dense nuclear matter

The corresponding multi-purpose setup

Baryonic Matter at Nuclotron (BM@N)

6 July 2012

	Nuclotron beam intensity (particle per cycle)				
Beam	Current	lon source type	New Injection facility + booster		
р	3·10 ¹⁰	Duoplasmotron	5·10 ¹²		
d	3·10 ¹⁰	,,	5·10 ¹²		
⁴ He	8.10 ⁸	,,	1·10 ¹²		
d↑	2.10 ⁸	SPI	1.10 ¹⁰		
⁷ Li	8.10 ⁸	Laser	5·10 ¹¹		
11,10 B	1.10 ^{9,8}	,,			
¹² C	1.10 ⁹	,,	2·10 ¹¹		
²⁴ Mg	2·10 ⁷	,,			
¹⁴ N	1.10 ⁷	ESIS ("Krion-6T")	5·10 ¹⁰		
²⁴ Ar	1.10 ⁹	,,	2·10 ¹¹		
⁵⁶ Fe	2·10 ⁶	,,	5·10 ¹⁰		
⁸⁴ Kr	1.10 ⁴	,,	1.10 ⁹		
¹²⁴ Xe	1·10 ⁴	,,	1.10 ⁹		
107Au	-	,,	1.10 ⁹		

6 July 2012

BM@N Collaboration

6 July 2012

6 July 2012

Study of dense baryonic matter at < 6 GeV/n

Physics is complementary to the MPD program & will be actual even after start of the MPD runs:

AA interactions:

- particle production, incl. sub-threshold processes;
- particle (collective) flows, event-by-event fluctuations, correlations;
- multiplicities, phase space distributions of p, n, π , K, hyperons, light nuclear fragments, vector mesons, hadronic resonances, direct light hypernuclei production in central AA collisions.

• pA, nA, dA interactions in direct & inverse (Ap, Ad) kinematics:

- to get a "reference" data set for comparison with AA interactions,
- to look for polarization effects in particle production off nuclear targets by polarized d, p, n.

MultyPurpose Detector (MPD) 1-st IP @ NICA Collider

4 GeV < $\sqrt{S_{NN}}$ < 11 GeV (for Au⁷⁹⁺)

6 July 2012

MPD Observables

I stage: mid rapidity region (good performance)

- \Box Particle yields and spectra (π , K, p, clusters, Λ , Ξ , Ω)
- Event-by-event fluctuations
- **D** Femtoscopy involving π , K, p, Λ
- Collective flow for identified hadron species
- Electromagnetic probes (electrons, gammas)

II stage: extended rapidity + IT

Total particle multiplicities

- □ Asymmetries study (better reaction plane determination)
- Di-Lepton precise study (ECal expansion)
- Exotics (soft photons, hypernuclei)

measurements regarded as complementary to RHIC/BES, CERN/NA61 & FAIR

.....

MPD/NICA advantage is Scan of the QCD phase diagram

Strategy:

detailed energy & system size scan

with a step ~ 10 MeV/u in selected regions

with a high L aimed in a search for anomalies:

- in particle production in the vicinity of the critical point,
- signatures of in-medium modification

of the vector-spectral functions,

- study of the properties of the mixed phase

of strongly interacting matter.

MPD progress in R&D

Straw full scale prototype for EC tracking

Technological TPC prototype

Material: Kevlar laminated by Tedlar film Diameter - 950 mm Length - 900 mm Wall thickness - 2 mm Weight ~ 10 kg

6 July 2012

6 July 2012

MPD feasibility study simulation with MPDROOT

Particle yields, Au+Au @ $\sqrt{s_{NN}} = 8$ GeV (central collisions)

Expectations for 10 weeks of running at $L = 10^{27} \text{ cm}^{-2} \text{ s}^{-1}$ (duty factor = 0.5)

Particle	Yields		Decay	BR	*Effic. %	Yield/10 w
	4π	y=0	mode			
π^+	293	97			61	2.6 · 10 ¹¹
K +	59	20			50	4.3 · 10 ¹⁰
р	140	41			60	1.2 · 10 ¹¹
ρ	31	17	e+e-	4.7 · 10 ⁻⁵	35	7.3 · 10 ⁵
ω	20	11	e+e-	7.1 · 10 ⁻⁵	35	7.2 · 10 ⁵
φ	2.6	1.2	e+e-	3 · 10 -4	35	1.7 · 10 ⁵
Ω	0.14	0.1	Λ K	0.68	2	2.7 · 10 ⁶
D ⁰	2 · 10 ⁻³	1.6 ·10 ⁻³	Κ +π ⁻	0.038	20	2.2 · 10 ⁴
J/ ψ	8 · 10 ⁻⁵	6 · 10 ⁻⁵	e+e-	0.06	15	10 ³

*Efficiency includes the MPD acceptance, realistic tracking and particle ID. Particle Yields from experimental data (NA49), statistical and HSD models. Efficiency from MPD simulations. Typical efficiency from published data (STAR)

6 July 2012

Reaction plane determination & flow study

V.Kekelidze, ICHEP-2012, Melbourne

Particle Dentification in MPD

(realistic detector simulation)

- Coverage: |η| < 1.4, p_t=0.1-2 GeVc barrel /η| < 2.6, pt=0.1-2 GeVc barrel+EC
 Matching eff.: > 85% at p_t > 0.5 GeV/c
- PID: $2\sigma \pi/K \sim 1.7 \text{ GeV/c}, (\pi, K)/p \sim 2.5 \text{ GeV/c}$

6 July 2012

Dileptons: e+e-

6 July 2012

Cooperation @ Nuclotron-M / NICA experiments

Joint Institute for Nuclear Research

- □ Institute for Nuclear Research, RAS, **RF**
- Nuclear Physics Institute of MSU, RF
- □ Institute Theoretical & Experimental Physics, **RF**
- □ St.Petersburg State University, **RF**
- □ Bogolyubov Institute for Theoretical Physics, NAS, Ukraine
- □ Institute for Scintillation Materials, Kharkov, Ukraine
- State Enterprise Scientific & Technology Research Institute for Apparatus construction, Kharkov, Ukraine
- Institute of Applied Physics, AS, Moldova
- Particle Physics Center of Belarusian State University, Belarus
- Physics Institute Az.AS, Azerbaijan
- □ Institute for Nuclear Research & Nuclear Energy BAS, Sofia, Bulgaria
- □ Aristotel University of Thessaloniki, Greece
- GSI, Germany
- □ Institute of Physics & Technology of MAS, University of Mongolia
- Department of Engineering Physics, Tsinghua University, Beijing, China
- University of Science and Technology of China, Hefei, China
- Osaka University, Japan
- 🗆 RIKEN, Japan
- The University of Sidney, Australia
- □ TJNAF (Jefferson Laboratory), USA
- University of Cape Town, RSA

6 July 2012

Concluding Remarks

The BM@N TDR preparation

 & Collaboration formation
 - are going on

 The MPD R&D's are well progressing;
 The MPD final design - close to completion

 - under the permanent supervision by the external referee's

New participants are welcomed to join to BM@N &/or MPD projects

The second Interaction Point is waiting for

Your PROPOSALS !

6 July 2012

Thank you

6 July 2012

V.Kekelidze, ICHEP-2012,

6 July 2012 V.Kekelidze, ICHEP-2012,