

PRODUCTION OF THE HEAVIEST CHARGED HIGGS BOSON IN 3-3-1 MODELS C. Alvarado, R. Martínez, F. Ochoa

Departamento de Física, Universidad Nacional de Colombia, Bogotá D.C., Colombia

Abstract

We study the production cross section of the heaviest hypercharge-two Higgs boson (H_2^{\pm}) predicted by the $SU(3)_c \otimes SU(3)_L \otimes U(1)_X$ gauge model (3-3-1 model). Taking into account intermediate vector bosons, including a new Z' neutral boson, we calculate the cross section of H_2^{\pm} pair production at CERN-LHC hadron collider. Considering Z'-mass of the order of 1 TeV, we found that the cross sections decreases from 100 fb to 1×10^{-3} fb for the H_2^{\pm} -mass range 200 - 1000 GeV. We also found that for masses below 500 GeV, the cross section of the H_2^{\pm} -boson and the hipercharge-one H_1^{\pm} -boson also predicted by the same model, are different.

Spin **Basis** $SU(3)_L \otimes U(1)$ 2 - 1 - 13'3'3 (u, s, b) $Q_{1L}: (3,1/3)$ $Q_{2,3L}: (3^*, 0)$ -1 2 2 $d, c, t = (Q_{1L}, Q_{2,3L})$ Quarks 3'3'3 $\langle T, J_1, J_2 \rangle$ $\frac{2}{3}, \frac{-1}{3}, \frac{-1}{3}$ $(\nu_e, \nu_\mu, \nu_\tau)$ (0)

Introduction

An interesting alternative to extend the Standard Model (SM) are the models with gauge symmetry $SU(3)_c \otimes SU(3)_L \otimes$ $U(1)_X$ (3-3-1 models) [1], which introduce a family non-universal U(1) symmetry. Some typical features are :

- \checkmark From cancellation of chiral anomalies, can explain why there are three fermion families.
- ✓ The large mass difference between the [b, t] quark family and the [u(c), d(s)] may be understood.
- ✓ The quantization of electric charge and the vectorial character of the electromagnetic interactions can be predicted.
- ✓ Introduces new types of matter relevant to the next generation of colliders at the TeV energy scales without spoiling the low energy limits at the electroweak scale.

The 331 spectrum

We consider a 3-3-1 model where the electric charge is defined by:

$$Q = T_3 - \frac{1}{\sqrt{3}}T_8 + X,$$
(1)

with $T_3 = \frac{1}{2}Diag(1, -1, 0)$ and $T_8 = (\frac{1}{2\sqrt{3}})Diag(1, 1, -2)$. The table in figure 1 show the sector of the spectrum we are interested in. In summary the model contains:

Three phenomenological SM-fermion families plus new fermions E, T, J. The right-handed sector are $SU(3)_L$ singlets with $U(1)_X$ quantum numbers equal to the electric charge.

Leptons	$\begin{pmatrix} e, \mu, \tau \\ E_1, E_2, E_3 \end{pmatrix}_L = l_L$	(3, -1/3)	$\begin{pmatrix} -1\\ 0 \end{pmatrix}$
Scalars	$ \begin{pmatrix} \chi_1^0, \rho_1^+, \eta_1^0 \\ \chi_2^-, \rho_2^0, \eta_2^- \\ \chi_3^0, \rho_3^+, \eta_3^0 \end{pmatrix}_L = (\chi, \rho, \eta) $	$\chi: (3, -1/3)$ $\rho: (3, 2/3)$ $\chi: (3, -1/3)$	$\begin{pmatrix} 0,1,0 \\ -1,0,-1 \\ 0,1,0 \end{pmatrix}$
Neutral Gauge Bosons	$(W^{3}_{\mu}, W^{8}_{\mu}, B_{\mu})$	(8,0)	0

FIGURE 1: 3-3-1 Spectrum

FIGURE 2: $SU(2)_L \otimes U(1)_Y$ structure of the ρ and η scalar triplets

 \blacksquare One heavy scalar triplet χ with a VEV ν_{χ} at large scales, which produces the breaking:

 $SU(3)_L \otimes U(1)_X \rightarrow SU(2)_L \otimes U(1)_Y$ Two light scalar triplets ρ and η with VEVs $v_{\rho(\eta)}$, which produces the breakdown

 $SU(2)_L \otimes U(1)_Y \to U(1)_Q.$

Three electroweak neutral gauge bosons.

The ρ and η triplets contains the hipercharge-Y structures shown in Figure 2. After the symmetry breaking, the charged weak eigenstates rotate into the following mass eigenstates:

Hipercharge-one Higgs : $H_1^{\pm} = -S_{\beta_T}\rho_1^{\pm} + C_{\beta_T}\eta_2^{\pm}$ Hipercharge-two Higgs : $H_2^{\pm} \approx \rho_3^{\pm}$

where $T_{\beta_T} = v_{\eta}/v_{\rho}$. The photon A, neutral weak boson Z and a new neutral boson Z' are:

$$A_{\mu} = S_{W}W_{\mu}^{3} + C_{W}\left(\frac{1}{\sqrt{3}}T_{W}W_{\mu}^{8} + \sqrt{1 - \frac{1}{3}(T_{W})^{2}}B_{\mu}\right),$$

$$Z_{\mu} = C_{W}W_{\mu}^{3} - S_{W}\left(\frac{1}{\sqrt{3}}T_{W}W_{\mu}^{8} + \sqrt{1 - \frac{1}{3}(T_{W})^{2}}B_{\mu}\right),$$

$$Z'_{\mu} = -\sqrt{1 - \frac{1}{3}(T_{W})^{2}}W_{\mu}^{8} + \frac{1}{\sqrt{3}}T_{W}B_{\mu},$$

where the Weinberg angle is defined as $S_W = \sqrt{3}g_X/\sqrt{3}g_L^2 + 4g_X^2$, with g_L and g_X the coupling constants of the groups $SU(3)_L$ and $U(1)_X$, respectively.

The couplings

For the interaction between the SM-quarks and neutral gauge bosons [2]:

 $\mathcal{L}_D^{NC} = eQ_q \overline{q} \mathcal{A} q + \frac{g_L}{2C_W} \overline{q} \left[\gamma_\mu \left(g_v^q - g_a^q \gamma_5 \right) Z^\mu + \gamma_\mu \left(\widetilde{g}_v^q - \widetilde{g}_a^q \gamma_5 \right) Z'^\mu \right] q,$ (4)

where $g_v^q = g_a^q - 2Q_q S_W^2$, $2g_a^q = 1(-1)$ for up-(down-)type quarks, $\tilde{g}_v^q = \tilde{g}_a^q - 2Q_q n S_W^2$, $\tilde{g}_a^q = n(-n)[1/2 - S_W^2]$ for the s, b-(u-)quarks and $\tilde{g}_a^q = n(-n)/2$ for the c, t-(d-)quarks. The Z' couplings contains the normalization factor $n = 1/\sqrt{3 - 4S_W^2}$.

For the cubic interaction between the charged Higgs bosons and the gauge bosons:

$$\begin{aligned} \mathcal{L}^{HHV} &= -ie \left[H_1^+ H_1^- + H_2^+ H_2^- \right] (p-q)^{\mu} A_{\mu} \\ &- \frac{ig_L}{2C_W} \left[C_{2W} H_1^+ H_1^- + 2S_W^2 H_2^+ H_2^- \right] (p-q)^{\mu} Z_{\mu} \\ &+ \frac{ig_X}{2\sqrt{3}T_W} \left[\left(C_{2\beta_T} + T_W^2 \right) H_1^+ H_1^- + 2 \left(1 + T_W^2 \right) H_2^+ H_2^- \right] (p-q)^{\mu} Z_{\mu}' \end{aligned}$$

The above couplings allow the pair production mode shown in Figure 3.

✓ For $M_H < 500$ GeV, the cross sections splits, with $\sigma(H_2) > \sigma(H_1) > \sigma(H_{2HDM})$ due to the Z' contribution.

✓ For $M_H > 500$ GeV, the Z' contribution is forbidden by the kinematic $(M'_Z < 2M_H)$. Thus, the cross section drops, as shown.

✓ The H_1^{\pm} -Z' is β_T -dependent. We choose $T_{\beta_T} = 9$ in the above graph.

References

(2)

(3)

(5)

[1] F. Pisano and V. Pleitez, Phys. Rev. **D46**, 410 (1992); P.H. Frampton, Phys. Rev. Lett. **69**, 2889 (1992); R. Foot, H.N. Long and T.A. Tran, Phys. Rev. **D50**.

[2] Rodolfo A. Diaz, R. Martinez, F. Ochoa, Phys. Rev. D72, 035018 (2005); Fredy Ochoa, R. Martinez, Phys. Rev. **D72**, 035010 (2005); A. Carcamo, R. Martinez and F. Ochoa, Phys. Rev. **D73**, 035007 (2006).

[3] A. Alves, E. Ramirez Barreto, A.G. Dias, Phys. Rev D84 (2011) 075013..

FIGURE 4: Pair production cross section of charged Higgs bosons