Study of QCD in Gamma Gamma to Pseudoscalar Meson Pair Processes at Belle

H.Nakazawa

National Central University (R.O.C.)

July 7, ICHEP2012

$\gamma\gamma \rightarrow MM'$ in perturbative QCD

• $\mathcal{M}_{\lambda_1\lambda_2}(W^2,\theta^*) = \int_0^1 \int_0^1 dx dy \phi_M(x,Q_x) \phi_{M'}(y,Q_y) \mathcal{T}_{\lambda_1\lambda_2}(x,y,\theta^*)$ Meson distribution amplitude (DA) ϕ_{M} $T_{\lambda,\lambda_0}(x, y, \theta^*)$ Hard scattering amplitude for $\gamma \gamma \rightarrow q \bar{q} q \bar{q}$.

•
$$\frac{d\sigma}{d|\cos\theta^*|} = 16\pi\alpha^2 \frac{|F_M(W^2)|^2}{W^2} \left\{ \frac{(e_1-e_2)^4}{\sin^4\theta^*} + \frac{2e_1e_2(e_1-e_2)^2}{\sin^2\theta^*} g(\theta^*) + 2e_1^2e_2^2g^2(\theta^*) \right\}$$

$$F_M \qquad \text{Meson form factor.} \sim 1/W^2 \text{ at leading order.}$$

$$g(\theta^*) \qquad \text{Only unknown, non-perturbative factor.}$$

- ۰ Brodsky and Lepage (BL) [PRD24, 1808 (1981)]
- First term dominant for charged pairs. ~ $f_M^4/W^6 \sin^4 \theta^*$. •
- $g(\theta^*)$ dominant for neutral pair.
- $d\sigma(K^+K^-)/d\sigma(\pi^+\pi^-) = (f_K/f_\pi)^4 = 2.3$
- $\sigma \sim W^{-6}$ from dimensional counting rule [PRL31,1153(1973)]
- Benavoun and Chernyak (BC) [NPB329, 285 (1990)]
 - With SU(3) symmetry breaking, different DA for π and K

 - $d\sigma(K^+K^-)/d\sigma(\pi^+\pi^-) = 1.06$ For neutral pair mode, $\sigma \sim W^{-10}$ because higher order effects are dominant below 4 GeV. [arxiv:0912.0623]
- pQCD is supposed to work correctly at sufficiently high energy region. Up to 4 GeV is high enough?

H.Nakazawa (NCU)

φ_M, ματαγία M'

イロト イポト イヨト イヨト

M manne

mmm

$\gamma\gamma \rightarrow MM'$ in Handbag Model

- Diehl, Kroll, Vogt (DKV) [PLB532, 99 (2002); PLB683, 165 (2010)]
- $\frac{d\sigma}{d|\cos\theta^*|}(\gamma\gamma \rightarrow MM') = \frac{8\pi\alpha^2}{W^2}\frac{1}{\sin^4\theta^*}|R_{MM'}(W^2)|^2$
 - $R_{MM'}$: Soft transition form factor that describes $q\bar{q} \rightarrow MM'$. Not calculable, taken from experiment.
- Final states cannot have I = 2 because intermediate state is $q\bar{q}$ (possible in pQCD where $\gamma\gamma \rightarrow q\bar{q}q\bar{q}$).

Charge counting & flavor symmetry

•
$$\sigma(K_SK_S) = \frac{2}{25}\sigma(K^+K^-),$$

 $\sigma(\pi^0\pi^0)/\sigma(\pi^+\pi^-) = 0.5$

• Angular distribution $\propto \sin^{-4} \theta^*$

Pseudoscalar Meson Pair Production in Two-Photon processes at Belle

No-tag method

 $W = M(\gamma\gamma) = M(MM')$

- e⁺e⁻ escape down the beam pipe at small recoil angles.
- Reactions involve almost real photons with $\left| \overrightarrow{p_t}(M) + \overrightarrow{p_t}(M') \right| \sim 0$ in e^+e^- frame.
- θ^* in *MM'* cms is a good approximation to the scattering angle from $\gamma \gamma$ axis. • $\frac{d\sigma}{d|\cos\theta^*|} = \frac{\Delta N}{\Delta W \Delta |\cos\theta^*| \frac{dL_{\gamma\gamma}}{dW} \operatorname{eff} \int \mathcal{L}dt}, \frac{dL_{\gamma\gamma}}{dW}$: Luminosity Function

Angular Distributions for $\pi^+\pi^-$, K^+K^- , K_SK_S

 $\gamma\gamma \rightarrow \pi^+\pi^-$ and K^+K^-

 $\gamma\gamma \rightarrow K_{\rm S}K_{\rm S}$

W=2.5-2.6 GeV

0.2 0.4

W=2.8-3.3 GeV

0.2 0.4 lcos0*l

Matches sin⁻⁴ θ* above 3.0 GeV.

• Consistent with $\sin^{-4} \theta^*$ above 2.4 GeV.

Belle $\gamma \gamma \rightarrow MM'$

< ∃ →

Angular Distributions for $\pi^0 \pi^0$, $\eta \pi^0$, $\eta \eta$

- $\sin^{-4}\theta^* + b\cos\theta^*$ better.
- Approaches $\sin^{-4} \theta^*$ above 3.1 GeV.

 $\gamma\gamma \to \eta\pi^0$

 Good agreement with sin⁻⁴ θ^{*} above 2.7 GeV.

 $\gamma\gamma \to \eta\eta$

- Poor agreement with $\sin^{-4} \theta^*$.
- sin⁻⁶θ* better above

mode	$\sin^{-4} \theta^*$	GeV	$ \cos\theta^* $				
$\pi^+\pi^-$	Match well.	3.0 - 4.1	< 0.6				
K^+K^-	Match well.	3.0 - 4.1	< 0.6				
K _S K _S	Consistent.	2.4 - 3.3	< 0.6				
$\pi^0\pi^0$	$\sin^{-4}\theta^* + b\cos\theta^* \text{ better.}$ Approaches $\sin^{-4}\theta^*$ above 3.1 GeV.	2.4 - 4.1 [†]	< 0.8				
$\eta \pi^0$	Good agreement above 2.7 GeV.	3.1 - 4.1	< 0.8				
ηη	Poor agreement. $\sin^{-6} \theta^*$ better above 3.0 GeV.	2.4 - 3.3	< 0.9				
$\dagger \chi_{cJ}$ region, 3.3 - 3.6 GeV is excluded.							

All modes show $\sin^{-4} \theta^*$ or similar dependence above 3.0 GeV except the $\eta\eta$ mode.

Cross sections $(W^{-n} \text{ dependences})$ and their ratios for $\gamma\gamma \rightarrow \pi^+\pi^-, K^+K^-, K_SK_S$

H.Nakazawa (NCU)

Belle $\gamma \gamma \rightarrow MM'$

Cross sections $(w^{-n} \text{ dependences})$ and their ratios for $\gamma\gamma \to \pi^0\pi^0, \eta\pi^0, \eta\eta$

Desses	a sa matis	14//0-1/)	1 a a a 0 ⁸ 1	DI	DO	DKV
Process	n or σ_0 ratio	W(Gev)	$ \cos\theta $	BL	BC	DKV
$\pi^+\pi^-$	$7.9 \pm 0.4 \pm 1.5$	3.0 - 4.1	< 0.6	6	6	
K^+K^-	$7.3 \pm 0.3 \pm 1.5$	3.0 - 4.1	< 0.6	6	6	
$K^0_S K^0_S$	$10.5 \pm 0.6 \pm 0.5$	2.4 - 4.0	< 0.6	6	10	
$\pi^{0}\pi^{0}$	$8.0\pm0.5\pm0.4$	3.1 - 4.1 [†]	< 0.8	6	10	
$\eta \pi^0$	$10.5 \pm 1.2 \pm 0.5$	3.1 - 4.1	< 0.8	6	10	
$\eta\eta$	$7.8\pm0.6\pm0.4$	2.4 - 3.3	< 0.8	6	10	
$K^{+}K^{-}/\pi^{+}\pi^{-}$	$0.89 \pm 0.04 \pm 0.15$	3.0 - 4.1	< 0.6	2.3	1.06	
K _S K _S /K ⁺ K ⁻	~ 0.13 to ~ 0.01	2.4 - 4.0	< 0.6		0.005	2/25
$\pi^{0}\pi^{0}/\pi^{+}\pi^{-}$	$0.32 \pm 0.03 \pm 0.06$	3.1 - 4.1	< 0.6		0.04-0.07	0.5
$\eta \pi^{0} / \pi^{0} \pi^{0}$	$0.48 \pm 0.05 \pm 0.04$	3.1 - 4.0	< 0.8	$0.24R_f(0.46R_f)^{\ddagger}$		
$\eta\eta/\pi^0\pi^0$	$0.37 \pm 0.02 \pm 0.03$	2.4 - 3.3	< 0.8	$0.36R_f^2(0.62R_f^2)^{\ddagger}$		

 $\dagger \chi_{cJ}$ region, 3.3 – 3.6 GeV is excluded.

 $\ddagger \eta$ meson as a pure SU(3) octet (mixture of octet and singlet with $\theta_p = -18^\circ$), $R_f = f_{\eta}^2 / f_{-0}^2$.

- Similar *n* values ranging 7 to 10
- Most cross section ratios constant above ~ 3 GeV.

Conclusions

- The Belle experiment has measured pseudoscalar meson pair production in two-photon collisions,
 γγ → π⁺π⁻, K⁺K⁻, K_SK_S, π⁰π⁰, ηπ⁰, and ηη.
- Our data are compared with (p)QCD predictions.
- The angular distribution of most modes follow a $\sin^{-4} \theta^*$ or similar θ^* dependence above 3 GeV.
- *n* values of *Wⁿ* dependence range 7 to 10, a bit higher than the dimensional counting rule.
- Cross section ratios are close to constant above ~3 GeV except σ(K_SK_S)/σ(K⁺K⁻)
- No single theory can describe these measurements systematically.