

HEAVY FLAVOR RESULTS FROM CMS

KEITH ULMER UNIVERSITY OF COLORADO on behalf of the CMS collaboration

ICHEP, Melbourne, Australia

July 6th, 2012

The CMS detector

7/6/12

Tracker and Muon performance

Discovery of
$$\Xi_{b}^{*}$$
 baryon

7/6/12

$=_{b}$ reconstruction

Search strategy to maximize Ξ_b yield

$$\Xi_b^- \rightarrow J / \Psi(\mu^- \mu^+) \Xi^-(\Lambda \pi^-)$$
 with $\Lambda \rightarrow p \pi^-$

- Selection cuts determined with optimization algorithm on data
 - Randomly vary selection and keep better combination
 - Select on track d₀/o, vertex displacement significance, pointing angles, vertex confidences, and track and resonance p_T
 - 30 variables in total
- Last step to add prompt π consistent with Ξ_b direction, with p_T>250 MeV

Ξ^{*}_b signal

- Background dominated by random $\Xi_{b}\pi^{+}$ combinations
 - Obtain with toy model from data shapes for p(Ξ_b), p(π) and opening angle
 - Consistent with wrong-sign Q value distribution
- □ Significance determination from $\ln(\mathcal{L}_{s+b}/\mathcal{L}_b) = 6.9\sigma$
- Confirmed with toys varying backgrounds within uncertainties including LEE = 5.7σ

Measured mass =

$$m(\Xi_{b}^{*}) = 5945.0 \pm 0.7 \pm 0.3 \pm 2.7$$
 (PDG) MeV

7/6/12

$\Lambda_{\rm b}$ production measurement

- \Box $\Lambda_{\rm b}$ production measured in decays to $J/\psi\Lambda$
- □ Yields and efficiencies computed in bins of $p_T(\Lambda_b)$ and $y(\Lambda_b)$ to obtain differential cross section

7/6/12

Keith Ulmer -- University of Colorado -- CMS

$\Lambda_{\rm b}$ cross section compared to mesons

- □ New Λ_b measurement allows for comparison to B⁺, B⁰ and B_s mesons
- Shape vs B p_T shows interesting feature
 - Baryon spectrum falls faster than meson spectra
 - Effect in baryon vs meson hadronization
- Historically, hadronization fractions assumed to be constant, but LEP and Tevatron measurements disagree
- Discrepancy in baryon/ meson production could be explained by different p_T spectra

7/6/12

$\Lambda_{\rm b}/\Lambda_{\rm b}$ asymmetry results

- Also measure yields and efficiencies as ratios between particles and antiparticles
 - \blacksquare Use charge of higher momentum Λ track to identify the (anti)proton
- Results consistent with no asymmetry, within large uncertainties
- Tests baryon transport models from initial pp state

B_c⁺ meson studies

- B⁺_c is ground state of bound bc system
- Offers access to two different heavy quarks
 - Branching ratio measurements help understand interplay between b and c decays
 - Lifetime measurement also tests decay model
- Large LHC dataset allows for 100's of reconstructed B_c's at CMS
 - Very good resolution ~20-25 MeV
 - Observed in two decay channels: $B_c \rightarrow J/\psi\pi$ and $B_c \rightarrow J/\psi3\pi$

7/6/12

Search for $D^0 \rightarrow \mu^+ \mu^-$

- \square D⁰ \rightarrow µ⁺µ⁻ highly suppressed in SM $(\sim 10^{-13})$, but enhanced in many NP scenarios
- Analysis strategy
 - Use D⁰ tagged by combination with prompt π to make D^{*}

- Measure $\frac{D^{*+} \rightarrow D^0(\mu^-\mu^+)\pi^+}{D^{*+} \rightarrow D^0(K^-\mu^+\nu)\pi^+}$ to cancel many systematic uncertainties in the ratio
- \square Limitation: must use low p_{τ} single μ trigger (from 7 run periods with different thresholds in 2010/11data)
- Estimate of background in signal region determined from sidebands

7/6/12

$D^0 \rightarrow \mu^+ \mu^-$ results

No significant signal observed **CMS PAS BPH-11-017** Predicted background = 23 events Signal region yield = 23 events Determine 90% confidence UL's with CLs to be $B(D^0 \to \mu^+ \mu^-) \le 5.4 \times 10^{-7} (90\% \text{ CL}).$ Comparison to other experiments **D** Best published limit: Belle $< 1.4 \times 10^{-7}$ PRD, 81 091102 LHCb-CONF-2012-005 **D** Best preliminary limit: LHCb $< 1.1 \times 10^{-8}$ $[0.6 - 8.1] \times 10^{-7}$ BaBar 2 sided limit: arXiv:1206.5419

Prospects for CMS: lots more data available, but requires new analysis strategy with double µ trigger

Search for $B^{0}_{(s)} \rightarrow \mu^{+}\mu^{-}$

7/6/12

- □ $B^0_{(s)} \rightarrow \mu^+ \mu^-$ suppressed in SM, but highly sensitive to NP, such as high tan β SUSY or extended Higgs sectors
- Select pair of oppositely charged, displaced, isolated muons pointing to PV

3D

$B^{0}_{(s)} \rightarrow \mu^{+}\mu^{-}$ results

Observation consistent with background + SM signal in all 4 channels

$B^{0}_{(s)} \rightarrow \mu^{+}\mu^{-}$ 2011 LHC combination

- \Box CMS, LHCb and ATLAS combined for $B_s^0 \rightarrow \mu^- \mu^+$
- \Box CMS and LHCb combined for $B^0 \rightarrow \mu^- \mu^+$ [CMS PAS BPH-12-009]

95% upper limits:

Computed with CLs

$$UL(B_s^0@95\% CL) < 4.2 \times 10^{-9}$$

 $UL(B^0@95\% CL) < 8.1 \times 10^{-10}$

All uncertainties treated as uncorrelated, except for f_s/f_d, which is taken to be 100% correlated between the measurements

World's best limits

□ Increasing tension with CDF result: $BF(B_{s}^{0} \rightarrow \mu^{-}\mu^{+}) = 13^{+9}_{-7} \times 10^{-9}$

Conclusion: Active flavor program at CMS

CMS

- □ First observation of new b baryon state, Ξ^{*0}_b
- Λ_b production shows unexpected meson/baryon differences
- □ Search for B_s→µµ closing in on SM sensitivity
- Many more measurements to come from CMS

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsBPH

7/6/12

Extra slides

Tracking efficiency

- Silicon tracker covers out to |η|<2.4 and down to track p_T > 300 MeV
- Great track reconstruction efficiency
 - Measured in data with good agreement with simulation
 - ~100% for central muons
 - Hadron efficiency 85-95% due to tracks lost in interactions
 - Excellent displaced track reconstruction out to 50 cm displacement from beamline

7/6/12

Tracking performance

- \square Track impact parameter resolution 25-200 μm
 - $\hfill\square$ Improves with higher p_T and smaller η
- Track momentum resolution 0.6-3.0%
 - Improves with smaller η
- Provides good mass and lifetime resolution
 - $\blacksquare~$ For $B^+{\rightarrow}J/\psi K^+$ decays mass resolution ${\sim}30$ MeV and core $c\tau$ resolution ${\sim}30~\mu m$

Muon reconstruction efficiency

- Muons reconstructed out to |η|<2.4 and down to p_T > 3 GeV
- Muon identification
 efficiency plateaus to
 nearly 100% with
 turn on at low p_T
- Trigger efficiency plateaus ~85%
- Low muon mis-ID rates measured in data
 - \approx 0.1% for π and K

 $\square \approx 0.05\%$ for protons

7/6/12

Heavy flavor triggers

7/6/12

- Use dedicated dimuon trigger paths for heavy flavor studies
- Exploit good momentum, impact parameter, mass and vertex resolution at trigger level to select interesting topologies
- Bandwidth restrictions are the main limitation for most measurements

More tracking performance plots

22

*

E b event selection algorithm

- Ξ_{b}^{-} selection algorithm:
 - At every iteration:
 - Choose randomly 2 variables.
 - Randomly: tighten one, loosen the other.
 - Look at Ξ_b[−] mass distribution:
 - Signal region: 5.75 < M < 5.83 GeV
 - Side-bands: 5.69 < M < 5.75 or 5.83 < M < 5.89 GeV
 - Calculate: B = 2N_{side-bands}/3 ; S = N_{signal} B
 - Accept iteration if S does not decrease and:
 - S/sqrt(S+B) increases (then save the iteration) or
 - S/sqrt(S+B) decreases by at most r*10% (r = uniform random number). In this case
 proceed but do not save the iteration.

Keith Ulmer -- University of Colorado -- CMS

7/6/12

 $\perp_{\rm b}$ event selection

A sampling of some cut values determined from the algorithm

■ After trigger and Λ reconstruction $p_{\rm T}({\rm p}) > 1.0 \,{\rm GeV}, \, p_{\rm T}(\pi_{\Xi}) > 0.18 \,{\rm GeV}, \, p_{\rm T}(\Xi^-) > 1.3 \,{\rm GeV},$ $p_{\rm T}(\Xi^-_{\rm b}) > 9.8 \,{\rm or}\, 10.6 \,{\rm GeV}$ depending on whether $|\eta(\Xi^-_{\rm b})| < 1.2 \,{\rm or}$ not, $|\eta({\rm J}/\psi)| < 2.15, \, D_{\rm ip}/\sigma_{\rm Dip}({\rm p}) > 1.0, \, D_{\rm ip}/\sigma_{\rm Dip}(\pi_{\Lambda}) > 0.66,$ $L_{xy}/\sigma_{Lxy}(\Xi^-) > 2.8, \,{\rm CL}(\Lambda^0) > 2.5\%, \,{\rm CL}(\Xi^-_{\rm h}) > 0.72\%,$ $D_{\rm 3d}/\sigma_{\rm D3d}(\Xi^- - {\rm J}/\psi) < 3.1 \, D_{\rm 3d}/\sigma_{\rm D3d}(\Xi^-_{\rm b} - {\rm PV}) < 3.5$

7/6/12

Ξ^{*}_b background shape

- □ Background dominated by random $\Xi_{b}^{-}\pi^{+}$
- Background shape from wrong sign pions
 - Toy model from data shapes for p(Ξ_b), p(π) and angle between Ξ_b and π, assumed to be uncorrelated
 - Fit toy results for shape
 - Compares well with nominal wrong sign distribution

7/6/12

$\Lambda_{\rm b}$ cross section measurement

π^{-} π^{+} \Im_{800}° $Yield =$ $\nabla_{s=7 \text{ TeV}}$	$p_{\mathrm{T}}^{\Lambda_{\mathrm{b}}}$	n _{sig}	e
1252 ± 42	(GeV)	events	(%)
μ^+	10 - 13	293 ± 22	0.29 ± 0.03
J/Ψ	13 - 15	240 ± 18	0.79 ± 0.08
	15 - 18	265 ± 19	1.54 ± 0.16
$u^{-} \qquad \qquad$	18 - 22	207 ± 16	2.34 ± 0.23
0 ¹	22 - 28	145 ± 14	3.21 ± 0.34
m _{J/ΨΛ} (GeV)	28 - 50	87 ± 11	3.96 ± 0.50
$\Box \Lambda_{b} \text{ reconstructed in decays to } J/\psi$	$ y^{\Lambda_b} $	n _{sig}	e
$\begin{tabular}{l} & \Lambda_b \ reconstructed in decays to J/\psi \\ (\mu^+\mu^-) \Lambda(p\pi) \end{tabular}$	$ y^{\Lambda_b} $	n _{sig} events	е (%)
 Λ_b reconstructed in decays to J/ψ (μ⁺μ⁻) Λ (pπ) Measure yield and efficiency in bins 	$\frac{ y^{\Lambda_b} }{0.0 - 0.3}$	$n_{\rm sig}$ events 233 ± 17	ϵ (%) 0.74 ± 0.09
 Λ_b reconstructed in decays to J/ψ (μ⁺μ⁻) Λ(pπ) Measure yield and efficiency in bins 	$\frac{ y^{\Lambda_{\rm b}} }{0.0 - 0.3}$ 0.3 - 0.6	n_{sig} events 233 ± 17 256 ± 18	ϵ (%) 0.74 ± 0.09 0.77 ± 0.09
 Λ_b reconstructed in decays to J/ψ (μ⁺μ⁻) Λ(pπ) Measure yield and efficiency in bins of p_T and rapidity to determine 	$\frac{ y^{\Lambda_b} }{0.0 - 0.3}$ 0.3 - 0.6 0.6 - 0.9	n_{sig} events 233 ± 17 256 ± 18 206 ± 16	ϵ (%) 0.74 ± 0.09 0.77 ± 0.09 0.81 ± 0.09
 Λ_b reconstructed in decays to J/ψ (μ⁺μ⁻)Λ(pπ) Measure yield and efficiency in bins of p_T and rapidity to determine differential cross section 	$\frac{ y^{\Lambda_b} }{0.0 - 0.3}$ $0.3 - 0.6$ $0.6 - 0.9$ $0.9 - 1.2$	n_{sig} events 233 ± 17 256 ± 18 206 ± 16 196 ± 17	ϵ (%) 0.74 ± 0.09 0.77 ± 0.09 0.81 ± 0.09 0.70 ± 0.08
 Λ_b reconstructed in decays to J/ψ (μ⁺μ⁻) Λ(pπ) Measure yield and efficiency in bins of p_T and rapidity to determine differential cross section Particle-antiparticle differences 	$\frac{ y^{\Lambda_b} }{0.0 - 0.3}$ $0.3 - 0.6$ $0.6 - 0.9$ $0.9 - 1.2$ $1.2 - 1.5$	n_{sig} events 233 ± 17 256 ± 18 206 ± 16 196 ± 17 189 ± 17	ϵ (%) 0.74 ± 0.09 0.77 ± 0.09 0.81 ± 0.09 0.70 ± 0.08 0.67 ± 0.09
 Λ_b reconstructed in decays to J/ψ (μ⁺μ⁻) Λ (pπ) Measure yield and efficiency in bins of p_T and rapidity to determine differential cross section Particle-antiparticle differences studied, too 	$\frac{ y^{\Lambda_b} }{0.0 - 0.3}$ $0.3 - 0.6$ $0.6 - 0.9$ $0.9 - 1.2$ $1.2 - 1.5$ $1.5 - 2.0$	n_{sig} events 233 ± 17 256 ± 18 206 ± 16 196 ± 17 189 ± 17 162 ± 18	ϵ (%) 0.74 ± 0.09 0.77 ± 0.09 0.81 ± 0.09 0.70 ± 0.08 0.67 ± 0.09 0.65 ± 0.09

7/6/12

$\Lambda_{\rm b}$ cross section compared to mesons

- □ Historically, hadronization fractions assumed to be constant
- □ However, measurements between LEP and Tevatron not consistent
 - HFAG 2012: Tevatron (p_T(b) ~10 GeV): f(b-baryon) = 0.212 ± 0.069

■ HFAG 2012: LEP ($p_T(b) \sim 40 \text{ GeV}$): f(b-baryon) = 0.090 ± 0.015

Discrepancy in baryon/meson production measurements between Tevatron and LEP could be explained by different p_T spectra

7/6/12

$D^0 \rightarrow K^-\mu^+\nu$ and $D^0 \rightarrow \mu^-\mu^+$ analyses

- very tight cuts on muons (excellent p_T resolution and efficiency, large pseudorapidity coverage)
- tight cuts on kaon
- soft cuts on pion
- CL of primary vertex > 1%
- CL of secondary vertex > 1%
- for $D^0 \rightarrow \mu \mu$ analysis: D^0 pointing back to the primary
- L/S cut, that is the 3D-detachment between the primary and secondary vertices divided by its error (L/S > 3)
- D⁰ candidate is combined with one track originating from the primary vertex to form D*+

All $B^{0}_{(s)} \rightarrow \mu^{+}\mu^{-}$ selection cuts

Variable	Barrel	Endcap	units	comparison to old analysis
$p_{\perp\mu,1} >$	4.5	4.5	GeV	same
$p_{\perp \mu,2} >$	4.0	4.2	GeV	tighter in endcap
$p_{\perp B} >$	6.5	8.5	GeV	tighter in endcap
$\ell_{3d} <$	1.5	1.5	cm	tighter
$\alpha <$	0.050	0.030	rad	looser
$\chi^2/dof <$	2.2	1.8		looser
$\ell_{3d}/\sigma(\ell_{3d}) >$	13.0	15.0		looser
I >	0.80	0.80		redefined
$d_{ca}^0 >$	0.015	0.015	cm	redefined
$\delta_{3D} <$	0.008	0.008	cm	new
$\delta_{3D}/\sigma(\delta_{3D}) < 0$	2.000	2.000		new
$N_{trk} <$	2	2	tracks	new

Pileup independence

- □ Check influence of pileup on selection cuts with $B^+ \rightarrow J / \Psi(\mu^- \mu^+) K^+$ events in data
- Confirm with MC studies
- No significant dependence in efficiency vs pileup out to ~30 PV's

Background estimation

- Non-peaking background measured violation violation in data
 - Count events in B mass sidebands 4.80-5.20 GeV and 5.45-6.00 GeV
 - Interpolate to signal region with assumption of flat shape
- Peaking background obtained from MC with inputs from data

6/8/12

- B→hh backgrounds with two muons from misidentified charged hadrons peak in B mass
- Measure muon mis-ID rates in data from identified K and π from D^(*) and p from Λ samples

- Use MC without muon selection cuts to simulate backgrounds and apply fake rate measurements from data
- Affects B^0 more than B^0_s because backgrounds peak low

$B_s \rightarrow \mu^+ \mu^-$ comparison with LHCb

LHCb advantages

- Better mass resolution: ~25 MeV vs ~35-70 MeV
- Higher trigger efficiency
- More sophisticated analysis: BDT selection, combine different S/B bins vs cut and count in 2 bins
- CMS advantages

7/6/12

- **u** Higher luminosity: Factor of \sim 5 in 2011, currently factor of >10 in 2012
- (More room for improvement in analysis technique)

More $B^{0}_{(s)} \rightarrow \mu^{+}\mu^{-}$ interpretation

MasterCode collaboration arXiv:1112.3564