Quarkonium suppression in PbPb collisions @ CMS

ICHEP2012 Melbourne Nuno Leonardo (Purdue University) On behalf of the CMS Collaboration

ICHEP 2012, July 6

the ompact uon olenoid detector

3.8T Superconducting Solenoid

Hermetic (|η|<5.2) Hadron Calorimeter (HCAL) [scintillators & brass]

Lead tungstate E/M Calorimeter (ECAL)

All Silicon Tracker (Pixels and Microstrips)

Redundant Muon System (RPCs, Drift Tubes, Cathode Strip Chambers)

the Compact Solenoid détector

3.8T Superconducting Solenoid

Electron

Charged Hadron (e.g. Pion)

Neutral Hadron (e.g. Neutron)

HCAL

ECAI

Hadron

Electromagnet Calorimeter Hermetic (|η|<5.2) Hadron Calorimeter (HCAL) [scintillators & brass]

Lead tungstate E/M Calorimeter (ECAL)

All Silicon Tracker (Pixels and Microstrips)

Redundant Muon System (RPCs, Drift Tubes, Cathode Strip Chambers)

dimuon spectrum pp@7TeV

quarkonium production pp@7TeV

CMS-BPH-11-001

JHEP 02 (2012) 011

dimuon spectrum @2.76TeV

dimuon spectrum @2.76TeV

quarkonia as probe for QGP

- one of the most striking expected characteristics of QGP formation is the suppression of quarkonium states
 - Debye color-screening of the $Q-\overline{Q}$ binding potential
 - suppression pattern \Rightarrow indication of medium temperature

Matsui-Satz: screening the potential

Screening in a deconfined medium: effective charge of Q and Q reduced

expect sequential melting

	charmonia			bottomonia				
State	J/ψ (1S)	χ_c (1P)	ψ' (2S)	Ύ (1S)	χ_b (1P)	Ϋ́ (2S)	χ'_{b} (2P)	Ύ (3S)
m (GeV/ c^2)	3.10	3.53	3.68	9.46	9.99	10.02	10.26	10.36
<i>r</i> ₀ (fm)	0.50	0.72	0.90	0.28	0.44	0.56	0.68	0.78

suppression of excited Y(nS) states

$$\frac{N_{\Upsilon(2S+3S)}/N_{\Upsilon(1S)}|_{\text{PbPb}}}{N_{\Upsilon(2S+3S)}/N_{\Upsilon(1S)}|_{\text{pp}}} = 0.31^{+0.19}_{-0.15} \pm 0.03$$

indication of 2S+3S relative suppression (significance: 2.4σ, p-value 0.9%)

PRL 107 (2011) 052302

suppression of excited Y(nS) states

(95% C.L.)

 $Y(3S)/Y(1S)|_{PbPb}$

 $Y(3S)/Y(1S)|_{pp}$

< 0.17

observation of relative suppression (significance larger than 5σ)

HIN-11-011

ICHEP 2012

Y(nS)/Y(1S) double ratio

• double ratio:

experimentally (acceptance and efficiencies cancel out) and theoretically robust observable

 suppression of Y(2S) relative to Y(IS) does not vary strongly with PbPb collision centrality

all 3 states separated

Absolute Y(nS) suppression

• nuclear modification factor (RAA)

- measured for the first time for the individual Υ states

- Υ states are suppressed sequentially: $\Upsilon(3S) \rightarrow \Upsilon(2S) \rightarrow \Upsilon(1S)$
- $\Upsilon(IS)$ not incompatible with excited state suppression only
 - considering ~50% excited to ground state feed-down

N. Leonardo

quarkonía suppressíon @ LHC CMS

RAA vs centrality

 suppression observed to increase with the centrality of the collisions

• Y(2S)

- always more suppressed than ground state
- still suppressed in 50-100% centrality bin (which is broad)
- consistent with rapid onset of excited states suppression
 - detailed studies of onset will require very high statistics

J/ψ suppression

prompt J/Ψ: clear suppression, with strong centrality dependence

suppression by factor 5 in 0-10%

N. Leonardo

J/ψ suppression

prompt J/Ψ: clear suppression, with strong centrality dependence

- suppression by factor 5 in 0-10%
- comparison w/ theory
 - recombination effects expected to be small at high pT

J/ψ suppression

JHEP 1205 (2012) 063

- prompt J/Ψ: clear suppression,
 with strong centrality dependence
 - suppression by factor 5 in 0-10%
- comparison w/ theory
 - recombination effects expected to be small at high pt
- comparison w/ other experiments

ALICE

 less suppression at forward rapidity, low pt (includes b-hadron feeddown)

• RHIC

 similar (PHENIX) and less (STAR) suppression observed than at LHC

excited charmonia

 carry out the measurement of the excited-to-ground state relative suppression in the charmonia as done for the bottomonia case

$\psi(2S)$ vs J/ ψ suppression

summary

- first measurements of the individual Υ states in the heavy-ion environment
- established the relative excited-to-ground state suppression (>5 σ)
- measured the quarkonium sequential melting:
 - Y(3S) > Y(2S),ψ(2S)* > J/ψ* > Y(IS)
- (* for high-pT charmonia)
- more data (pp, pPb, PbPb) will allow further studies of bottomonia & charmonia
- characterizing the medium properties, one peak at a time.

overview recap

- CMS & Dimuon spectra
- Quarkonium production in pp
 - baseline reference
 - see also talks in Y(nS), χc cross sections&ratios (K.Ulmer, Tk5&7, 5/7), Y(nS) polarizations (V.Knunz, Tr6, 7/7)
- Quarkonium suppression in PbPb
 - Charmonia
 - Bottomonia
- Summary

N. Leonardo

quarkonía suppressíon @ LHC CMS

botomonia comparisons

 $552 < T_0 < 580$ MeV, for $3 > 4\pi\eta/S > 1$

compatible with CMS (≈0.32)

N. Leonardo

bottomonia suppression vs N_{part}

arXiv:1112.2761v4

0--- Y(3s)

-- - Xh1

Δ····Δ χ_{b2}

0-0 Y(1s)

G-- Y(2s)

→ Y(3s)

~-~ Xh1

A Xh2

Npart

400

charmonia

total fit

0-20%, 1.6 < |y| < 2.4

3.8

4

4.2

3 < p₊ < 30 GeV/c

--- background

raw yield ratio of ψ(2S) / J/ψ

- p_T>6.5 GeV, |y|<1.6
- in 0-20% PbPb ~ 2x smaller than in pp

- pT>3 GeV, I.6<|y| <2.4
- in 0-20% PbPb ~5x larger than in pp

2.6

2.8

3

3.2

3.4 3.6

m_{uu} (GeV/c²)

 10^{3}