Collective flow and charged hadron correlations in 2.76 TeV PbPb collisions at CMS

Sandra S. Padula

for the CMS collaboration
Origin of azimuthal correlations

- Smooth IC
 - odd harmonics = 0 (by symmetry)
- Fluctuations in IC
 → give rise to odd harmonics ≠ 0

Elliptic flow

\[
\frac{dN}{d\phi} \sim 1 + 2v_2 \cos 2(\phi - \psi_2) + 2v_3 \cos 3(\phi - \psi_3) + \ldots
\]

Triangular flow

Smooth Initial Conditions

Fluctuations in IC
Azimuthal correlations investigated in CMS

Hydrodynamic flow driven by asymmetric pressure gradients & spatial anisotropies
Soft-hard interplay (hadrons from thermal quarks + jet fragmentation)
Path-length dependent energy loss

low p_T
intermediate p_T
high p_T

p_T (GeV/c)
Highlights

• Measuring azimuthal anisotropy of charged particles:
 – Physics motivation:
 • EoS, opacity, and viscosity of the medium
 • Initial conditions and the role of fluctuations
 – Elliptic anisotropy at lower $p_T \rightarrow$ different methods
 • Event Plane
 • Cumulants
 – Two-particle: $v_2\{2\}$
 – Four-particle: $v_2\{4\}$
 • Lee-Yang Zeros
 – Elliptic anisotropy at high p_T (Event Plane)
 – Dihadron correlations
 • Investigate anisotropies of higher order Fourier harmonics

• Summary
The CMS Detector includes:

- EM Calorimeter (ECAL)
- Hadron Calorimeter (HCAL)
- Beam Scintillator Counters (BSC)
- Forward Calorimeter (HF) (2.9<|η|<5.0)

Tracker
- (Pixels and Strips)

- Muon System

Very large coverage

(|Δφ| ≤ 2π, |Δη| < 5)

η=0

η=2.5

η=-ln[tan(θ/2)]

θ

ζ

y

x

φ

z

Sandria S. Padula

ICHEP 2012 - Melbourne
Four methods: EP, $v_2\{2\}$, $v_2\{4\}$, LYZ

Event Plane

\[v_2\{EP\} = \langle \cos \left[2(\phi - \psi_{EP}) \right] \rangle / R \]

Need to correct for ψ_{EP} resolution (R)

- \(\eta = -5 \)
- \(\eta = -3 \)
- \(\eta = -2.4 \)
- \(\eta = 2.4 \)
- \(\eta = 0 \)
- \(\eta = 3 \)
- \(\eta = 5 \)

Two-particle Cumulant

\[v_2\{2\} = \sqrt{\langle \cos \left[2(\phi_1 - \phi_2) \right] \rangle} \]

Consider all two-particle correlations

Four-particle Cumulant

\[v_2\{4\} = (2\langle \cos[2(\phi_1 - \phi_2)] \rangle)^2 - \langle \cos(\phi_1 + \phi_2 - \phi_3 - \phi_4) \rangle)^{1/4} \]

Consider all four-particle correlations

Lee-Yang Zeros

Consider all particle correlations (not all shown)
Di-hadron correlations (5th method)

Signal

\[S(\Delta \eta, \Delta \phi) = \frac{1}{N_{\text{trig}}} \frac{d^2 N_{\text{same}}}{d \Delta \eta \, d \Delta \phi} \]

Particle 1: trigger
Particle 2: associated

Background distribution:

\[B(\Delta \eta, \Delta \phi) = \frac{1}{N_{\text{trig}}} \frac{d^2 N_{\text{mix}}}{d \Delta \eta \, d \Delta \phi} \]

Di-hadron correlations (5th method)

\[\Delta \eta = \eta_{\text{assoc}} - \eta_{\text{trig}} \]
\[\Delta \phi = \phi_{\text{assoc}} - \phi_{\text{trig}} \]

Associated hadron yield per trigger:

\[\frac{1}{N_{\text{trig}}} \frac{d^2 N_{\text{pair}}}{d \Delta \eta \, d \Delta \phi} = B(0, 0) \times \frac{S(\Delta \eta, \Delta \phi)}{B(\Delta \eta, \Delta \phi)} \]

1st analysis: PbPb@ \(\sqrt{s_{NN}} = 2.76 \text{ GeV} \):
0-5% most central coll. \(\Rightarrow \) JHEP07, 076 (2011)

40-50%

\[3 < p_{T_{\text{trig}}} < 3.5 \text{ GeV}/c \]
\[1 < p_{T_{\text{assoc}}} < 1.5 \text{ GeV}/c \]

Fourier analysis of $\Delta \phi$ correlations

Fourier decomposition: fitting the 1D $\Delta \phi$-projected distribution for $1 < |\Delta \eta| < 4$ as

$$\frac{1}{N_{\text{trig}}} \frac{dN_{\text{pair}}}{d\Delta \phi} = \frac{N_{\text{assoc}}}{2\pi} \left\{ 1 + \sum_{n=1}^{N_{\text{max}}} 2V_{n\Delta} \cos(n\Delta \phi) \right\} \quad (N_{\text{max}} = 5)$$

Flow driven correlations:

$$V_{n\Delta}(p_T^{\text{trig}}, p_T^{\text{assoc}}) = v_n(p_T^{\text{trig}}) \times v_n(p_T^{\text{assoc}})$$

Complementary to standard flow methods (i.e., EP, cumulants, LYZ)
$v_2(p_T)$: results for the 4 first methods

All methods:

- $v_2(p_T)$ grows up to 40-50%, then decreases

- Behavior with p_T: rise up to $p_T \sim 3\text{GeV/c}$, then gradually decreases (except $v_2\{2\}$ above 50%)

arXiv:1204.1409
Integrated v_2 scaled by eccentricity

Participant Eccentricity

$\epsilon_{\text{part}} \equiv \frac{\sqrt{(\sigma_{y'}^2 - \sigma_{x'}^2)^2 + 4\sigma_{x'y'}^2}}{\sigma_{y'}^2 + \sigma_{x'}^2}$

Cumulant Moments

$\epsilon \{2\}^2 \equiv \langle \epsilon_{\text{part}}^2 \rangle$

$v_2 \{2\} = \frac{v_2 \{4\}}{\epsilon \{4\}} \sim \frac{v_2 \{\text{EP} \}}{\epsilon_{\text{part}}}$

Differences between the methods → well described by Glauber model eccentricities for 15-40% centrality

v_2 / ϵ scales with the charged-particle rapidity density & is in good agreement with PHOBOS

Comparison with PHOBOS/RHIC

arXiv:1204.1409
$v_2(p_T)$: comparison with ALICE & low energies

- (1) CMS & ALICE for $v_2\{2\}$ and $v_2\{4\}$ \rightarrow good agreement within uncertainties

- (2) Qualitative $\sqrt{s_{NN}}$ dependence of integrated v_2 [4.7 GeV (AGS) - 2.76 TeV (LHC)]: 20-30% log increase with $\sqrt{s_{NN}}$ from RHIC@200GeV to LHC@2.76 GeV
$v_2(p_T)$ extended to high p_T & versus N_{part} (EP)

- First precise measurements of $v_2(p_T)$ up to $p_T \sim 60$ GeV/c (comparison with ATLAS)
- v_2 gradually decreases above $p_T=10$ GeV/c; remains $\neq 0$ up to very high p_T

$arXiv: 1204.1850$
2nd-5th order single-particle azimuthal harmonics

- Assuming factorization, i.e.,
 \[v_n(p_T^{\text{trig}}) = \frac{V_{n\Delta}(p_T^{\text{trig}}, p_T^{\text{low}})}{v_n(p_T^{\text{low}})}, \text{ where } v_n(p_T^{\text{low}}) = \sqrt{V_{n\Delta}(p_T^{\text{low}}, p_T^{\text{low}})} \]

- Non-zero \(v_3 \) and \(v_5 \) reflect fluctuations in IC
- For most peripheral (> 30%) \(\rightarrow \) \(v_3 \)-\(v_5 \) truncated due to statistical limitations

(🌟 included for completeness)
$v_2(p_T)$ at LHC with 4+1 complementary methods

$v_2(p_T)$ at LHC behaves similarly as at RHIC

Dihadron higher order $v_n \rightarrow$ new insight in IC, etc.

First v_2 measurements at 20 $< p_T \leq$ 60 GeV/c

High-p_T v_2 results \rightarrow constraints on energy loss models
» Centrality dependence of the harmonics, \(v_2 \) to \(v_5 \) \(\rightarrow \) 3 \(p_T^{\text{trig}} \) ranges:

- Strong \(v_2 \) dependence on centrality (not significant for \(v_3-v_5 \))
 - Expected from both hydrodynamic flow phenomena (lower-\(p_T \)) & path-length dependence of the parton energy-loss (higher \(p_T \))
 - \(v_2 \) sensitive to the lenticular shape (larger for peripheral coll.) of initial collision region; \(v_3-v_5 \) mostly driven by fluctuations in IC
v_2 from Di-hadron Correlations

$v_2(p_T)$ from dihadron correlation method (derived using fixed $1 < p_T^{assoc} < 1.5$ GeV/c) agrees well with EP method.
Two-dimensional (2D) per-trigger-particle associated yield of charged hadrons as a function of $|\Delta_{1}\eta|$ and $|\Delta_{1}\phi|$ for $3 < p_{\text{trig}} < 3.5 \text{ GeV/c}$ and $1 < p_{\text{assoc}} < 1.5 \text{ GeV/c}$, for the five central ranges of PbPb collisions at $\sqrt{s_{\text{NN}}} = 2.76 \text{ TeV}$. The near-side peak is truncated in the two most peripheral distributions to better display the surrounding structure.

The analysis is performed in twelve centrality classes of PbPb collisions ranging from the most central 0–5% to the most peripheral 70–80%. Within each centrality range, the yield described in Eq. (1) is calculated in 0.5 cm wide bins of the vertex position (z_{vtx}) along the beam direction and then averaged over the range $|z_{\text{vtx}}| < 15 \text{ cm}$.

When filling the signal and background distributions, each pair is weighted by the product of correction factors for the two particles. These factors are the inverse of an efficiency that is a function of each particle's pseudorapidity and transverse momentum, $\varepsilon_{\text{trk}}(\eta, p_{\text{T}}) = A(\eta, p_{\text{T}})E(\eta, p_{\text{T}})^{-1} - F(\eta, p_{\text{T}})$, where $A(\eta, p_{\text{T}})$ is the geometrical acceptance, $E(\eta, p_{\text{T}})$ is the reconstruction efficiency, and $F(\eta, p_{\text{T}})$ is the fraction of misidentified tracks. The effect of this weighting factor only changes the overall scale but not the shape of the associated yield distribution, which is determined by the signal-to-background ratio.

As described in Ref. [1], the track-weighting procedure is tested using MC events generated with HYDJET [39] (version 1.6) propagated through a full detector simulation. The tracking efficiencies themselves are checked using simulated tracks embedded into actual data events. Systematic uncertainties due to variations of the track reconstruction efficiency as a function of vertex location and also the procedure used to generate the background events are evaluated. The individual contributions are added in quadrature to find the final systematic uncertainties of 7.3–7.6%.

The two-dimensional (2D) per-trigger-particle associated yield distribution of charged hadrons as a function of $|\Delta_{1}\eta|$ and $|\Delta_{1}\phi|$ is measured for each p_{trig} and p_{assoc} interval, and in different centrality classes of PbPb collisions. An examination of the v_2 not prominent.
Dihadron correlations @ high p_T

- First observation of long range near-side (\(\Delta \phi \sim 0\)) structure for $p_T^{\text{trig}} > 20$ GeV/c
$v_2(\eta)$ and centrality of integrated v_2

- $v_2(\eta)$ is larger at mid-rapidity
- constant or decreases very slowly at larger values of $|\eta|$

- integrated v_2 vs. centrality for $|\eta| < 0.8$: increase from central to peripheral collisions (max. ~ 40–50%)
Near-side peak ($\Delta \phi \approx 0$): mostly jet fragmentation

Away-side region ($\Delta \phi \approx \pi$): nearly flat (weakly dependent in $\Delta \eta$)

pp data at 2.76 GeV: similar structure to 70-80% peripheral PbPb

Strength of 2 regions \to quantified by integrating over 2 ranges wrt $\Delta \phi_{\text{min}} \approx 1.18$
Integrated associated yields

- Near-side peak: increases by 1.7 from 70-80% to 0-5% [in (I)]; but only 1.3 in (IV) (at RHIC almost no centrality dependence)
- Away-side: yield decrease with centrality (negative for most central)
- On both near and away sides → yield in PbPb matches that in pp for the most peripheral events.
Centralities of the 1D $\Delta\phi$ distribution

- Averaging the 2D ($\Delta\eta, \Delta\phi$) in limited region in $\Delta\eta$

\[
\frac{1}{N_{\text{trig}}} \frac{dN_{\text{pair}}}{d\Delta\phi} = \frac{1}{(\Delta\eta_{\text{max}} - \Delta\eta_{\text{min}})} \int_{\Delta\eta_{\text{min}}}^{\Delta\eta_{\text{max}}} \frac{1}{N_{\text{trig}}} \frac{d^2N_{\text{pair}}}{d\Delta\eta d\Delta\phi} d\Delta\eta
\]

Short-range:

$0 < |\Delta\eta| < 1$

Long-range:

$2 < |\Delta\eta| < 4$
Dihadron correlations and single-particle anisotropies

- Factorization: valid up to $p_T^{assoc} \sim 3.5$ GeV/c & $p_T^{assoc} \sim 8$ GeV/c

- For 0-5% events → complex situation: factorization does not apply and other mechanisms must be at action, perhaps a complicated interplay of different particle production mechanisms between low-pT (hydrodynamic flow) and high-pT (dijet production) particles.