Measurements of $\gamma \gamma$ and γ +b cross sections

P. Svoisky, for the D0 Collaboration

Motivation

- Both γ γ and γ+b use high energy resolution of a photon
- γ +b probes a wide range of proton momentum fractions 0.007<x<0.4
 - Excellent for tuning b-quark and gluon PDFs
 - Gluon to bb fragmentation
- $\gamma \gamma$ spectrum is an indicator of high energy states
 - One has been just announced
 - Precise cross section measurements
 - New physics still possible at even higher energies
 - Kaluza-Klein gravitons, extra dimensions, etc.

γ +b theory

- Compton-like scattering at low p_T^{γ}
- Quark annihilation at high p_T^{γ}
- Higher order fragmentation processes
 - Gluon fusion
 - Corrections

Direct QCD $\gamma \gamma$

- Leading process at Tevatron is Born $(qq \rightarrow \gamma \gamma)$
 - At NLO real emissions and virtual corrections
 - DIPHOX uses fixed order NLO for initial state radiation and fragmentation functions
 - Initial state corrections resummed to all orders of α_s in RESBOS to NNLL accuracy
- $qg \rightarrow \gamma \gamma (NLO)$
 - Up to 50% at LHC energies
- Box diagrams (with corrections) NNLO but important at low mass (large gluon PDFs)

Fragmentation QCD

q

() 10 () 10 () 10 () 10

^س Wp/op

10

10⁻⁴

10⁻⁶

10⁻⁷ 10⁻⁸

10⁻⁹

- Single or double fragmentation
 - Needs isolation to separate

$$E_T^{iso} = \sum_{i,R<0.4} (p_{T,i} - p_{T,\gamma})$$

- $M_{\gamma \gamma} > p_T^{\gamma \gamma}$ removes a lot of fragmentation (low at Tevatron energies)
- Collinear singularities (final state)
 - Factorized into FF D (Z, μ) in DIPHOX
 - Auxiliary regulator in RESBOS $Q_T < E_t^{iso}$, single fragmentation is included via parametrization approximating NLO FF rates
- Parton showers replaced by ME at scale **O** SHERPA P. Svoisky, D0 Collaboration

D0 detector

- Liquid Ar calorimeter
- Silicon micro-strip tracker
- Central fiber tracker
- Muon system
- Central preshower

Analyses

- γ +b measuring d σ /dp_T $^{\gamma}$
 - $|\eta_{\gamma}| < 1.0 \text{ or } 1.5 < |\eta_{\gamma}| < 2.5$
 - $|\eta_{\text{b-jet}}| < 1.5, p_{\text{T}}^{\text{b-jet}} > 15 \text{ GeV}$
 - L=8.7±0.5 fb⁻¹
- $\gamma \gamma$ measuring $d\sigma/dM_{\gamma\gamma}$, $d\sigma/dp_T^{\gamma\gamma}$, $d\sigma/d\Delta \phi_{\gamma\gamma}$, $d\sigma/d|\cos\theta^*|$
 - $|\eta_{\gamma}| < 0.9, p_T^1 > 21 \text{ GeV}, p_T^2 > 20 \text{ GeV}, \Delta \phi_{\gamma\gamma} > \pi/2$
 - $M_{\gamma \gamma} > p_T^{\gamma \gamma}$, $30 < M_{\gamma \gamma} < 350 \text{ GeV}$, $p_T^{\gamma \gamma} < 100 \text{ GeV}$
 - L=4.2±0.3 fb⁻¹
 - Also $d^2 \sigma / dp_T^{\gamma \gamma} dM_{\gamma \gamma}, d^2 \sigma / d\Delta \phi_{\gamma \gamma} dM_{\gamma \gamma}, d^2 \sigma / d\Delta \phi_{\gamma \gamma} dM_{\gamma \gamma}, d^2 \sigma / d|\cos \theta^* | dM_{\gamma \gamma} in 3 M_{\gamma \gamma} bins$

γ identification

- Iso=[E_{tot}(0.4)-E_{EM}(0.2)]/E_{EM}(0.2)
 <0.07 (calorimeter cone isolation)
- EMF>0.97 (electro-magnetic fraction)
- p_{Ttrk}^{iso}=p_{Ttrk}(0.4)-p_{Ttrk}(0.2)<1.5 GeV (track cone isolation)
- SigPhi<18 (cell energy-weighted shower shape)
- TrkProb<0 and HOR<0.9 (anti-track match)
 - Track-match probability
 - Tracker hits along the projection from the calorimeter (hits on the road)

- Exploits differences in tracker, EM calorimeter and CPS activity between photons and jets, trained on MC
- Compared between γ and jets, describes data well
- ANN>0.3 is 98% efficient for photons

γpurities

- $\gamma \gamma$ uses 4x4 matrix method (solving for $\gamma \gamma, \gamma$ +jet,jet + γ ,jet+jet fractions, particles p_T ordered)
- γ +b uses bin-by-bin ANN template fit to data

B-jet ANN

- Variables
 - Number of SV
 - Invariant mass of tracks, associated with SV (M_{SVT})
 - Number of tracks used to reconstruct SV
 - 2D decay length significance of the SV
 - Weighted combination of transverse IP significances
 - Probability of jet tracks to originate from PV

γ +b b-jet fractions

 Bin-by-bin M_{SVT} template fit to data

7/5/12

P. Svoisky, D0 Collaboration

Compatibility corrections

- Theory (fixed order NLO) corrected to hadronization and multiple parton interactions
 - γ+b 5-10%(2% uncert)
 - γ γ 4-5.5% (0.5% uncert)
 - Calculated from Pythia tune A and SO (γ γ)
 - Pythia tune A and Sherpa (γ+b)
 - Sherpa already has
- Data are corrected for detector effects, migrations and pileup, and presented at particle level

γ +b cross sections

- Theory isolation PYTHIA and SHERPA particle level, NLO parton level
 - E_T^{iso}(0.4)<2.5 GeV
- NLO at factorization $\mu_{\rm F}$, fragmentation $\mu_{\rm f}$, renormalization scales $\mu_{\rm R}$ = $p_{\rm T}^{\ \gamma}$
 - CTEQ6.6M
- k_T
 - Additional contributions due to integration over k_T^2 above scale μ^2 (additional gluon radiation)
- PYTHIA 2→2 ME (g→bb in PS), CTEQ6.1L
- SHERPA ME γ + up to 3 jets, at least 1 b-jet, 2nd hard jet in g→bb
 - Resummation of further emissions
- P. Svoisky, D0 Collaboration

γ +b ratios to NLO

- NLO agrees 30<p^γ<70 GeV (within scale, PDF and experimental uncertainties), differs above
 - Needs higher order corrections for $qq \rightarrow \gamma g (g \rightarrow bb)$
- Best with SHERPA (allows 2 additional jets)

$\gamma \gamma$ single differential X-sections

- E_t^{iso}(0.4)<2.5 GeV
 - Particle SHERPA, PYTHIA
 - Parton RESBOS, DIPHOX

- RESBOS, DIPHOX, SHERPA CTEQ6.6M
- PYTHIA CTEQ5.1L
- $\mu_{\rm F} = \mu_{\rm f} = \mu_{\rm R} = M_{\gamma \gamma}$
- PDF, scale uncertainty from DIPHOX

$\gamma \gamma$ double differential X-sections 30<M $_{\gamma \gamma}$ <50 GeV

• Large discrepancies with RESBOS (used to correct for experimental effects, with acceptance reweightings to eliminate model dependence), SHERPA better

$\gamma \gamma$ double differential X-sections 50<M $_{\gamma \gamma}$ <80 GeV

- Predictions agree better
- DIPHOX divergent at $\Delta \phi_{\gamma \gamma} \approx \pi$ (no resummation)

$\gamma \gamma$ double differential X-sections 80<M $_{\gamma \gamma}$ <350 GeV

• High mass SHERPA overshoots data at high $p_T^{\gamma \gamma}$

P. Svoisky, D0 Collaboration

Summary

- Measured γ +b differential x-sections vs p_T^{γ}
- Single differential $\gamma \gamma$ x-sections vs $M_{\gamma \gamma}$, $p_T^{\gamma \gamma}$, $\Delta \phi_{\gamma \gamma}$, $|\cos \theta^*|$
- Double differential $d^2 \sigma / dp_T^{\gamma \gamma} dM_{\gamma \gamma}, d^2 \sigma / d\Delta \phi_{\gamma \gamma} dM_{\gamma \gamma}, d^2 \sigma / d\Delta \phi_{\gamma \gamma} dM_{\gamma \gamma}, d^2 \sigma / d\Delta \phi_{\gamma \gamma} dM_{\gamma \gamma}$
- Used high photon energy resolution to probe wide range of x (0.007<x<0.4) in γ +b
- Details of $\gamma \gamma$ shapes for fragmentation, new phenomena precision background x-section measurements, PDF effects
- NLO calculations miss higher order terms to describe effects in $qq \rightarrow \gamma g$ (g \rightarrow bb) at high p_T^{γ} , SHERPA describes those better by using extra jets in ME.
- RESBOS does not describe well the fragmentation effects at low $\Delta \phi_{\gamma\gamma}$, SHERPA again does a better job in describing higher order effects because of the match of PS and ME.