"Inclusive Searches for Squarks and Gluinos with the ATLAS Detector."

Moritz Backes¹ (University of Geneva, Switzerland)

on behalf of the ATLAS Collaboration

¹Moritz.Backes@cern.ch

36th INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS
4-11 July 2012

Melbourne Convention and Exhibition Centre, Australia

The ATLAS Experiment at the LHC

The ATLAS Detector:

- Inner detector inside 2 T solenoid magnetic field within pseudorapidity |n| < 2.5.
- Electromagnetic and hadronic calorimeters extending to |η| < 4.9.
- Muon spectrometer inside toroidal magnetic system covering |η| < 2.7.

Data collected in proton-proton collisions:

- 45 pb⁻¹ at \sqrt{s} = 7 TeV in 2010
- 5.3 fb⁻¹ at \sqrt{s} = 7 TeV in 2011
- 6.3 fb⁻¹ at \sqrt{s} = 8 TeV in 2012 (to date)

→ Results shown in this presentation based on full 2011 dataset, corresponding to 4.7 fb⁻¹ after data-quality requirements.

Inclusive SUSY searches with ATLAS

If squarks and gluinos exist at LHC accessible energies and R-parity is conserved:

- Pair-production.
- Direct or cascade decays to the stable lightest SUSY particle (LSP).

Experimental signature for inclusive searches:

- Missing transverse energy (E_{T.miss}).
- Jets.
- Other objects, e.g. leptons.

Scope of inclusive searches in ATLAS extended to SUSY models with compressed spectra:

- Small $\Delta M_{g,q-LSP}$.
- · Soft decay products.
- → Profit from presence of initial state radiation.

Analyses in this presentation:

- 0-lepton, \geq 2-6 jets, $E_{T.miss}$ [ATLAS-CONF-2012-033]
- 0-lepton, ≥ 6-9 jets, E_{T.miss} [<u>arXiv:1206.1760</u>]
- 1-lepton, ≥ 2-4 jets, E_{T.miss} [<u>ATLAS-CONF-2012-041</u>]

0-lepton + 2-6 jets + E_{T,miss} Analysis: Overview

Events selected with jet + E_{T,miss} triggers.

ATLAS-CONF-2012-033

- Events with electrons / muons vetoed.
- 6 inclusive channels with increasing jet multiplicity to obtain best reach over m_{squark}-m_{oluino} plane.

Paguirament	Channel							
Requirement	A	A'	В	C	D	E		
$E_{\mathrm{T}}^{\mathrm{miss}}[\mathrm{GeV}] >$			160					
$p_{\mathrm{T}}(j_1)$ [GeV] >				130				
$p_{\mathrm{T}}(j_2)$ [GeV] >			60					
$p_{\mathrm{T}}(j_3)$ [GeV] >	_	_	60	60	60	60		
$p_{\mathrm{T}}(j_4)$ [GeV] >	_	_	_	60	60	60		
$p_{\mathrm{T}}(j_5)$ [GeV] >	_	_	_	_	40	40		
$p_{\mathrm{T}}(j_6)$ [GeV] >		_	_		_	40		
$\Delta \phi(\text{jet}, E_{\text{T}}^{\text{miss}})_{\text{min}} >$	0.4 (i	$i = \{1, 2, (3)\}$	0.4 ($i = \{1, 2, 3\}$), 0.2 ($p_T > 40$ GeV jets)			> 40 GeV jets)		
$E_{\rm T}^{\rm miss}/m_{\rm eff}(Nj) >$	0.3 (2j)	0.4 (2j)	0.25 (3j)	0.25 (4j)	0.2 (5j)	0.15 (бј)		
$m_{\rm eff}({\rm incl.}) [{\rm GeV}] >$	1900/1400/–	<i>-</i> /1200/-	1900/–/–	1500/1200/900	1500/–/–	1400/1200/900		

- M_{eff}^(inc): scalar sum of E_{T,miss}, p_T of (all) jets with p_T > 40 GeV
- ΔΦ (jet, E_{T,miss}): minimum azimuthal angle between jets and E_{T,miss}
- Signal region (SR) A' optimized for sensitivity to compressed SUSY spectra.
- Reduction of multi-jet background via cuts $\Delta\Phi$ (jets, $E_{T,miss}$) and the ratio $E_{T,miss}$ / M_{eff} .
- Each channel has up to 3 SRs with loose / medium / tight M_{eff} cuts \rightarrow in total 11 inclusive SRs.
- Background estimation:
 - Isolate dominant backgrounds in control regions (CR)
 - Derive transfer factors (TF) to relate number of events in CR and SRs.

0-lepton + 2-6 jets + E_{T,miss} Analysis: Backgrounds

5 CRs for each SR. Extrapolation to the SRs with TFs (data-driven and from simulation).

0-lepton + 2-6 jets + E_{T,miss} Analysis: Results

No significant excess observed in any of the signal regions. Limits derived using for each model
point the SR with the best expected sensitivity.

See backup for result tables

- → MSUGRA/CMSSM models with tanβ = 10, $A_0 = 0$ and μ > 0.
- → Simplified squark-gluino-neutralino model (m_{I SP} = 0).

0-lepton + 6-9 jets + E_{T,miss} Analysis: Overview

arXiv:1206.1760

- Analysis targeting models with longer decay chains:
 - Many jets (≥6-9)
 - Softer E_{T,miss}

Signal region	7j55	8j55	9 j 55	6 j 80	7j80	8j80
Number of isolated leptons (e, μ)	= 0					
$\int\!$	> 55 GeV > 80 GeV					
$\boxed{\text{Jet } \eta }$	< 2.8					
Number of jets	≥7	≥8	≥9	≥6	≥7	≥8
$E_{ m T}^{ m miss}/\sqrt{H_{ m T}}$	$> 4 { m GeV}^{1/2}$					

- Events selected with multi-jet triggers.
- Events with electron / muons vetoed as in 0-lepton, 2-6 jets analysis.
- Final selection variable is $E_{T,miss} / \sqrt{H_T}$, where H_T is the scalar sum of jets with $p_T > 40$ GeV.

0-lepton + 6-9 jets + E_{T.miss} Analysis: Backgrounds

Multi-jet background (including fully hadronic tt):

- Dominant due to absence of $\Delta\Phi$ (jet, $E_{T,miss}$) cut and lower $E_{T,miss}$ requirements.
- Obtain $E_{T,miss}$ / $\sqrt{H_T}$ shape templates at lower jet multiplicities.
- Normalize shape in SR at low $E_{T,miss} / \sqrt{H_T}$ using events in regions $N_{SR} = N_C^* N_B / N_A$ after subtraction of leptonic backgrounds.
- → Assumption: E_{T,miss} / √H_T independent of jet multiplicity.

Template extracted from 4 jets selection.

'Leptonic' backgrounds (semi- and fully-leptonic tt, W/Z + jets):

- tt̄ / W+jets CRs: 1 muon, ≥ 1 / 0 b-jets. Treat muon as jet and apply SR selections.
- Z+Jets CR: 2 muons, m_{μμ} in Z-mass window.
 Add Z p_T to E_{T miss} and apply SR selections.
- TFs from simulation to extrapolate to SRs.

0-lepton + 6-9 jets + E_{T,miss} Analysis: Results

No significant excess observed in any of the signal regions. Limits derived using for each model
point the SR with the best expected sensitivity.

Signal region	7j55	8 j55	9j55	6j80	7j80	8j80
Total Standard Model	167±34	17±7	1.9±0.8	107±21	$8.6{\pm}2.5$	$0.80{\pm}0.45$
Data	154	22	3	106	15	1

Full table in backup

- → MSUGRA/CMSSM models with tanβ = 10, $A_0 = 0$ and μ > 0.
- → Simplified Model: Gluino pair production and decay via virtual stops to tt and neutralino.

1-lepton + 2-4 jets + E_{T.miss} Analysis: Overview

	3-jet	4-jet	soft-lepton
Trigger	Single electror	n or muon (+jet)	Missing $E_{\rm T}$
$N_{ m lep}$	1	1	1
$p_{\mathrm{T}}^{\ell}(\mathrm{GeV})$	> 25 (20)	> 25 (20)	[7,25] ([6,20])
$p_{\mathrm{T}}^{\ell_2}(\mathrm{GeV})$	< 10	< 10	< 7 (6)
$\overline{N_{jet}}$	≥ 3	≥ 4	≥ 2
p_{T}^{jet} (GeV)	> 100, 25, 25	> 80, 80, 80, 80	> 130,25
$p_{\mathrm{T}}^{\mathrm{j}et}$ (GeV)	< 80	_	_
$E_{\rm T}^{\rm miss}$ (GeV)	> 250	> 250	> 250
$m_{\rm T}$ (GeV)	> 100	> 100	> 100
$E_{ m T}^{ m miss}/m_{ m eff}$	> 0.3	> 0.2	> 0.3
$m_{\rm eff}^{\rm inc}$ (GeV)	> 1200	> 800	_

ATLAS-CONF-2012-041

- All signal regions mutually exclusive to facilitate combination.
- m_T: transverse mass calculated from lepton and E_{T.miss}.
- m_{eff}^{inc}: sum over E_{T,miss}, p_T of the lepton and all jets in the event.

2 "hard"- lepton SRs:

- Optimized for CMSSM/MSUGRA and models with large mass spectra.
- Higher p_T thresholds for all objects, higher jet multiplicities, tight cuts on E_{T.miss}.
- Final discriminating variable m_{eff} inc.

1 "soft"- lepton SR (new!):

- Optimized for models with compressed mass spectra.
- Low-p_T thresholds for electrons (muons) and subleading jet, high-p_T leading jet (initial state radiation), tight cuts on E_{T miss}.
- Final discriminating variable E_{T.miss} / m_{eff}.

(NB: Cuts on final discriminating variables lowered / removed for exclusion to allow shape fit in SRs.)

1-lepton + 2-4 jets + E_{T,miss} Analysis: Backgrounds

- Dominant backgrounds: tt, W+jets processes enriched in dedicated CRs.
- Minor backgrounds: Multi-jets (datadriven method), Z+jets, single-top, diboson production (simulation).
- Backgrounds in the SRs are determined with a simultaneous fit based on the profile likelihood method.

- → Shape of the jet multiplicity distribution is used in the W+jets and tt CRs.
- → Extrapolation from CRs to SRs via TFs taken from simulation.
- → Fit overcontrained: Some uncertainties are reduced in the fit using data.

• The validity of the background estimates is tested in validation regions between the CRs and SRs.

1-lepton + 2-4 jets + E_{T,miss} Analysis: Results

No significant excess observed in any SR.

	3-jet	4-jet	soft lepton
Observed events	3	6	26
Fitted bkg events	5.7 ± 4.0	8.3 ± 3.1	32 ± 11

- Limits derived from shape-fit in SRs and combination of results.
- → MSUGRA/CMSSM models with $\tan \beta = 10$, $A_0 = 0$ and $\mu > 0$.
- → 1-step simplified model with gluino pair-production followed by the decay $\tilde{g} \rightarrow q\bar{q}'\tilde{X}_1^{\pm} \rightarrow q\bar{q}'W^{\pm}\tilde{X}_1^0$, with $m_{\tilde{X}_1^{\pm}} = (m_{\tilde{g}} + m_{\tilde{X}_1^0})/2$.

Summary and Outlook

Summary:

- Three inclusive searches for squarks and gluinos have been presented using the full 2011 ATLAS dataset of 4.7 fb⁻¹.
- Major improvements:
 - Increased sensitivity to SUSY models with compressed mass spectra.
 - Increased sensitivity to multi-jet scenarios.
 - Reduction of systematic uncertainties.
- No significant excess found in any of the analyses.
- Previous exclusion limits significantly improved.

Outlook:

- Updates using the full 2011 data set are currently being finalized with additional interpretations and additional final states.
- First 8 TeV results expected soon.
- → Stay tuned ②

GMSB / AMSB interpretations:

➤ Steffen SCHAEPE, 5th July, 11:45

➤ Andrew HAAS, 6th July, 11:30

Backup

Comparison of Soft and Hard 1-Lepton Limits

The ratio of excluded cross sections of the soft and hard 1-lepton analyses demonstrates the improvement of the upper limits in the near diagonal region where small mass splitting between the SUSY particles are expected.

O-lepton, 2-6 jets Analysis: Signal Region Tables

Process	Signal Region								
1100033	SRC loose	SRE loose	SRA medium	SRA' medium	SRC medium	SRE medium			
tī+ Single Top	74 ± 13 (75)	66 ± 26 (64)	7 ± 5 (5.1)	11 ± 3.4 (10)	12 ± 4.5 (10)	17 ± 5.8 (13)			
Z/γ +jets	70 ± 22 (61)	22 ± 6.4 (13)	$31 \pm 9.9 (34)$	$64 \pm 20 (69)$	17 ± 5.9 (16)	8 ± 2.9 (4.4)			
W+jets	62 ± 9.3 (61)	23 ± 11 (23)	19 ± 4.5 (21)	$26 \pm 4.6 (30)$	8.1 ± 2.9 (11)	$5.9 \pm 3 (4.7)$			
Multi-jets	$0.39 \pm 0.4 (0.16)$	$3.7 \pm 1.9 (3.8)$	$0.14 \pm 0.24 (0.13)$	$0 \pm 0.13 (0.38)$	$0.024 \pm 0.034 (0.013)$	$0.8 \pm 0.53 (0.64)$			
Di-Bosons	$7.9 \pm 4 (7.9)$	$4.2 \pm 2 (4.2)$	$7.3 \pm 3.7 (7.5)$	15 ± 7.4 (16)	$1.7 \pm 0.87 (1.7)$	2.7 ± 1.3 (2.7)			
Total	$214 \pm 24.9 \pm 13$	$119 \pm 32.6 \pm 11.6$	$64.8 \pm 10.2 \pm 6.92$	$115 \pm 19 \pm 9.69$	$38.6 \pm 6.68 \pm 4.77$	$34 \pm 4.47 \pm 5.57$			
Data	210	148	59	85	36	25			
local p-value (Gaus. σ)	0.55(-0.14)	0.21(0.8)	0.65(-0.4)	0.9(-1.3)	0.6(-0.26)	0.85(-1)			

Process	Signal Region							
1100035	SRA tight	SRB tight	SRC tight	SRD tight	SRE tight			
tt+ Single Top	$0.22 \pm 0.35 (0.046)$	0.21 ± 0.33 (0.066)	$1.8 \pm 1.6 (0.96)$	2 ± 1.7 (0.92)	3.9 ± 4 (2.6)			
Z/γ+jets	$2.9 \pm 1.5 (3.1)$	$2.5 \pm 1.4 (1.6)$	2.1 ± 1.1 (4.4)	0.95 ± 0.58 (2.7)	$3.2 \pm 1.4 (1.8)$			
W+jets	2.1 ± 0.99 (1.9)	$0.97 \pm 0.6 (0.84)$	1.2 ± 1.2 (2.7)	1.7 ± 1.5 (2.5)	$2.3 \pm 1.7 (1.5)$			
Multi-jets	$0 \pm 0.0024 (0.002)$	$0 \pm 0.0034 (0.0032)$	$0 \pm 0.0058 (0.0023)$	$0 \pm 0.0072 (0.021)$	$0.22 \pm 0.25 (0.24)$			
Di-Bosons	1.7 ± 0.95 (2)	1.7 ± 0.95 (1.9)	$0.49 \pm 0.26 (0.51)$	2.2 ± 1.2 (2.2)	2.5 ± 1.3 (2.5)			
Total	$7 \pm 0.999 \pm 2.26$	$5.39 \pm 0.951 \pm 2.01$	$5.68 \pm 1.79 \pm 1.51$	$6.84 \pm 1.7 \pm 2.1$	$12.1 \pm 4.59 \pm 3.04$			
Data	1	1	14	9	13			
local p-value (Gaus. σ)	0.98(-2.1)	0.95(-1.7)	0.018(2.1)	0.29(0.55)	0.45(0.13)			

O-lepton, 6-9 jets Analysis: Signal Region Tables

Signal region	7 j55	8j55	9 j 55	6j80	7j8 0	8j80
Multi-jets	91±20	10±3	1.2±0.4	67±12	5.4±1.7	0.42±0.16
$tar t o q\ell,\ell\ell$	55±18	5.7±6.0	$0.70 {\pm} 0.72$	24±13	2.8±1.8	$0.38{\pm}0.40$
$W + \mathrm{jets}$	18±11	$0.81 {\pm} 0.72$	0+0.13	13±10	$0.34{\pm}0.21$	0+0.06
$Z + \mathrm{jets}$	2.7±1.6	$0.05{\pm}0.19$	0+0.12	2.7±2.9	0.10 ± 0.17	0+0.13
Total Standard Model	167±34	17±7	1.9±0.8	107±21	8.6±2.5	0.80±0.45
Data	154	22	3	106	15	1
$N_{ m BSM,max}^{95\%} { m \ (exp)}$	72	16	4.5	46	8.4	3.5
$N_{ m BSM,max}^{95\%} { m (obs)}$	64	20	5.7	46	15	3.8
$\sigma_{ ext{BSM,max}}^{95\%} \cdot A \cdot \epsilon ext{ (exp) [fb]}$	15	3.4	0.96	9.8	1.8	0.74
$\sigma_{ ext{BSM,max}}^{95\%} \cdot A \cdot \epsilon ext{ (obs) [fb]}$	14	4.2	1.2	9.8	3.2	0.81
$p_{ m SM}$	0.64	0.27	0.28	0.52	0.07	0.43

1-lepton, 2-4 jets Analysis: Signal Region Tables

	3-jet	4-jet	soft lepton
Observed events	3	6	26
Fitted bkg events	5.7 ± 4.0	8.3 ± 3.1	32 ± 11
Fitted top events	2.0 ± 1.5	5.3 ± 2.1	8.6 ± 3.4
Fitted W/Z+jets events	2.9 ± 2.1	2.0 ± 0.7	15 ± 7
Fitted other bkg events	0.5 ± 0.7	0.9 ± 0.8	0.62 ± 0.24
Fitted multijet events	0.3 ± 0.4	0.17 ± 0.30	8 ± 4
MC exp. SM events	5.6	7.9	32
MC exp. top events	1.9	5.0	8.6
MC exp. W/Z+jets events	3.1	2.0	15
MC exp. other bkg events	0.3	0.7	0.62
Data-driven multijet events	0.3	0.17	8

5 July 2012 Moritz Backes 18

0-lepton + 2-6 jets + E_{T,miss} Analysis: Backgrounds

5 categories of control regions. Kinematic selections of CRs close to the 11 SRs → 55 CRs.

CR	SR Background	CR process	CR selection
CR1a	$Z(\rightarrow \nu\nu)$ +jets	γ+jets	Isolated photon
CR1b	$Z(\rightarrow \nu\nu)$ +jets	$Z(\rightarrow \ell\ell)$ +jets	$ m(\ell,\ell) - m(Z) < 25 \text{ GeV}$
CR2	Multi-jets	Multi-jets	Reversed $\Delta\phi(j_i, E_{\mathrm{T}}^{\mathrm{miss}})$ cut
CR3	$W(\to \ell \nu)$ +jets	$W(\rightarrow \ell \nu)$ +jets	$30 \text{ GeV} < m_T(\ell, E_T^{\text{miss}}) < 100 \text{ GeV}, b\text{-veto}$
CR4	$t\bar{t}$ and single- t	$t\bar{t} \to bbqq'\ell v$	$30 \text{ GeV} < m_T(\ell, E_{\text{T}}^{\text{miss}}) < 100 \text{ GeV}, b\text{-tag}$

- Z(→ vv) + jets background (CR1a/b):
 - Add photon p_T (Z p_T) to $E_{T,miss}$ in CR1a(b) to mimic $E_{T,miss}$ in Z(→ vv) + jets events.
 - Exploit similar event kinematics of Z(→ vv) + jets and γ + jets at high vector boson p_T to derive TFs based on the cross-section ratio of the two processes (CR1a).
 - Derive TFs from MC in CR1b.
- Multi-jet background (CR2):
 - TFs are estimated using a data-driven technique based on the smearing of well-measured low E_{T miss} events by the detector resolution.
- W (→ Iv) + jets and top background (CR3, CR4):
 - Add leptons as jets in CR3 and CR4 to mimic W (→ Iv) + jets and top events in SRs.
 - Derive TFs from MC.
- → TFs and CRs event yields input to global likelihood fit performed separately for each SR.