Search for the Standard Model Higgs boson decaying to a b-quark pair with the ATLAS Detector

Giacinto Piacquadio (CERN)

on behalf of the ATLAS Collaboration

7. July 2012

ICHEP Conference - Melbourne

Higgs boson searches with b-quark jets

- The observation of $H \rightarrow bb$ is an important step for establishing a Standard Model Higgs boson.
- Challenging, despite the high *BR* for low Higgs boson masses.

Exploit leptonic decay modes (II, Iv, vv) of W/Z bosons produced in association with the Higgs boson

Identify b jets and look for a broad peak in the bb-jet invariant mass distribution ($\sigma \sim 15$ GeV).

Selection strategy

Three channels considered: $WH \to \ell \nu b\bar{b}$ $ZH \to \ell^+ \ell^- b\bar{b}$ $ZH \to \nu \bar{\nu} b\bar{b}$

$$WH \to \ell \nu b \bar{b}$$

$$ZH \to \ell^+\ell^-b\bar{b}$$

$$ZH \rightarrow \nu \bar{\nu} b \bar{b}$$

- Analysis based on 4.6-4.7 fb⁻¹ of 2011 data collected by ATLAS at $\sqrt{s} = 7$ TeV
- Main selection cuts:
- Missing ET > 25 GeV M₋>40 GeV pT(ℓ)>25 GeV pT(b)>45 GeV ь pT(b)>25 GeV No additional jets with pT>20 GeV and $|\eta|$ <4.

- Anti-Kt jets with R=0.4 are reconstructed from calorimeter energy deposits.
- Pile-up jets are suppressed by requiring more of 75% of the summed momenta of tracks matched to the jet to be associated to the primary event vertex.

Main backgrounds

Top background control regions

- **ZH** top control region:
 - |m(ℓℓ)-91GeV|>15 GeV
 - ETmiss > 50 GeV

- WH top control region:
 - Require 3 instead of 2 jets in the events

<u>Very good agreement in m(bb) shape</u> after simultanous fit to top and W+jet backgound normalizations. Normalization for W+jet background in 3 jet bin determined independently from W+jet in 2 jet bin.

W/Z+jet backgrounds

b-tagging algorithm: to suppress W/Z+light/c-jet background, Neural Network combines most advanced algorithms (3d impact parameter + inclusive vertex finder dedicated $PV \rightarrow b \rightarrow c$ decay chain fit)

 \rightarrow ϵ (light)~0.6%, ϵ (c-jet)~20%, ϵ (b-jet)~70%.

- Determine separate W/Z+b, W/Z+c and W/Z+light-jet fractions from data in 2-jet events requiring m(jet-jet) < 80 GeV:</p>
 - in events with one b-tagged jet, based on the b weight of the second jet.
 - in events with no b-tagged jets, based on the b weight of the first two jets.
- Flavour fractions determined before proceeding with nominal fit.

W/Z+jet backgrounds (II)

- A possible mismodeling of the m(bb) and $p_T(W/Z)$ "shapes" considered as a systematic uncertainty:
 - for W+bb, considering differences between various models (Alpgen+Herwig, Powheg+Pythia or Herwig, aMC@NLO+Herwig)
 - for Z+bb, from difference between data and MC predictions in the m(bb) sidebands

Analysis optimization

- To exploit the better S/B of the high p_T phase space region, all three channels sub-divided into intervals of $p_T(W)$ or $p_T(Z)$ [GeV]:
 - $WH \to \ell \nu b \bar{b}$ $ZH \to \ell^+ \ell^- b \bar{b}$:4 pT(W/Z) bins [0-50,50-100,100-200,>200]
 - $ZH \rightarrow \nu \bar{\nu} b \bar{b}$: 3 pT(Z) bins [120-160,160-200,>200]

- Further topological cuts in ZH → vvbb on DR(bb), Δφ(MET, bb).
- S/B enhanced from ~1% to ~15% in the highest p_{_} bin.
- This increases the number of "effective" channels from 3 to 11.
- Proper estimation of systematic uncertainty on p_T(W) or p_T(Z) modelling becomes crucial.

Yields and leading background uncertainties

		$ZH \rightarrow$	$\ell^+\ell^-bb$		$WH ightarrow \ell u bb$				$ZH ightarrow u ar{ u} bb$			
Bin	p_{T}^{Z} [GeV]			$p_{\mathrm{T}}^{W} \; [\mathrm{GeV}]$				$E_{\rm T}^{\rm miss}$ [GeV]				
	0-50	50-100	100-200	>200	0-50	50-100	100-200	>200	120-160	160-200	>200	
Number of events for $80 < m_{b\bar{b}} < 150 \; [\text{GeV}]$												
			1.6 ± 0.2									
Total Bkg	148 ± 10	150 ± 6	67 ± 46	6.9 ± 1.2	596 ± 23	598 ± 16	302 ± 10	27 ± 5	85 ± 8	32 ± 3	20 ± 3	
Data	141	163	61	13	614	588	271	15	105	22	25	
Components of the Background Relative Systematic Uncertainties [%]												
Theory	5.2	1.3	4.7	14.9	2.2	0.3	1.6	14.8	2.9	4.0	7.7	

- Theory uncertainty : ~1-15 %
 - One of the leading uncertainties
 - Mainly from m(bb) and pT(W/Z) modelling in W/Z+heavy flavour.

		$ZH \rightarrow$	$\ell^+\ell^-bb$			WH -	$\rightarrow \ell \nu bb$	$ZH \rightarrow \nu \bar{\nu} bb$					
Bin	$p_{\mathrm{T}}^{Z} \; [\mathrm{GeV}]$				p_{T}^{W} [[GeV]		$E_{\rm T}^{\rm miss}$ [GeV]					
	0-50	50-100	100-200	>200	0-50	50-100	100-200	>200	120-160	160-200	>200		
Number of events for $80 < m_{b\bar{b}} < 150 \; [\text{GeV}]$													
Signal	1.3 ± 0.1	1.8 ± 0.2	1.6 ± 0.2	0.4 ± 0.1	5.0 ± 0.6	5.1 ± 0.6	3.7 ± 0.4	1.2 ± 0.2	2.0 ± 0.2	1.2 ± 0.1	1.5 ± 0.2		
Total Bkg	148 ± 10	150 ± 6	67 ± 4	6.9 ± 1.2	596 ± 23	598 ± 16	302 ± 10	27 ± 5	85 ± 8	32 ± 3	20 ± 3		
Data	141	163	61	13	614	588	271	15	105	22	25		
Components of the Background Relative Systematic Uncertainties [%]													
Theory	5.2	1.3	4.7	14.9	2.2	0.3	1.6	14.8	2.9	4.0	7.7		
B-tag Eff	1.4	1.0	0.3	4.8	0.9	1.3	0.9	7.2	4.1	4.2	5.5		

◆ B-tagging efficiency : ~1-7 %

- B-tagging efficiency uncertainty per jet presently from 5 to 19% depending on pT(jet).
- Most of the overall normalization uncertainty cancels out when determining background normalizations on data, but effect of distortions on m(bb) and $p_{\tau}(W/Z)$ carefully evaluated.

	$ZH \to \ell^+\ell^-bb$					WH =	$+ \ell \nu bb$		$ZH \rightarrow \nu \bar{\nu} bb$					
Bin		p_{T}^{Z} [G	leV]			p_{T}^{W} [C	GeV		$E^{\scriptscriptstyle 1}$	miss [GeV]				
	0-50	50-100	100-200	>200	0-50	50-100	100-200	>200		160-200	>200			
Number of events for $80 < m_{b\bar{b}} < 150 \; [\text{GeV}]$														
Signal	1.3 ± 0.1	1.8 ± 0.2	$1.6 \pm 0.2 0.$	4 ± 0.15	0.0 ± 0.6	$.1 \pm 0.6$ 3	3.7 ± 0.4	1.2 ± 0.2	2.0 ± 0.2	$.2 \pm 0.1$	1.5 ± 0.2			
Total Bkg	148 ± 10	150 ± 6	67 ± 46 .	$.9 \pm 1.2 5$	$596 \pm 23 5$	98 ± 16	302 ± 10	27 ± 5	85 ± 8	32 ± 3	20 ± 3			
Data	141	163	61	13	614	588	271	15	105	22	25			
	Components of the Background Relative Systematic Uncertainties [%]													
Theory	5.2	1.3	4.7	14.9	2.2	0.3	1.6	14.8	2.9	4.0	7.7			
B-tag Eff	1.4	1.0	0.3	4.8	0.9	1.3	0.9	7.2	4.1	4.2	5.5			
Bkg Norm	3.6	3.4	3.6	3.8	2.7	1.8	1.8	4.5	2.7	2.2	3.2			

- **▶** Background normalization (statistical error) : ~2-5 %
 - Depends on amount of sideband data which determines background scale factors.

		$ZH \rightarrow$	$\ell^+\ell^-bb$			WH -	$\rightarrow \ell \nu bb$	$ZH \rightarrow \nu \bar{\nu} bb$						
Bin		p_{T}^{Z} [0	GeV			p_{T}^{W} [GeV		E_r^1	miss [GeV]			
	0-50		100-200	>200	0-50		100-200	>200	120-160	160-200	>200			
Number of events for $80 < m_{b\bar{b}} < 150 \; [\text{GeV}]$														
Signal	1.3 ± 0.1	1.8 ± 0.2	1.6 ± 0.2	0.4 ± 0.1	5.0 ± 0.6	5.1 ± 0.6	3.7 ± 0.4	1.2 ± 0.2	2.0 ± 0.2 1	1.2 ± 0.1	1.5 ± 0.2			
Total Bkg	148 ± 10	150 ± 6	67 ± 4	6.9 ± 1.2	596 ± 23	598 ± 16	302 ± 10	27 ± 5	85 ± 8	32 ± 3	20 ± 3			
Data	141	163	61	13	614	588	271	15	105	22	25			
		Compo	nents of t	he Backgr	ound Rela	tive Syste	ematic Un	certainties	s [%]					
Theory	5.2	1.3	4.7	14.9	2.2	0.3	1.6	14.8	2.9	4.0	7.7			
B-tag Eff	1.4	1.0	0.3	4.8	0.9	1.3	0.9	7.2	4.1	4.2	5.5			
Bkg Norm	3.6	3.4	3.6	3.8	2.7	1.8	1.8	4.5	2.7	2.2	3.2			
$\text{Jets}/E_{\text{Tr}}^{\text{miss}}$	2.1	1.2	2.7	5.1	1.5	1.4	2.1	9.5	7.7	8.2	12.1			

- Jet calibration / Missing ET : 2-10 % (8-12% in vvbb channel)
 - Pile-up corrections applied to jets to reduce uncertainty due to pile-up
 - Missing ET uncertainty dominant systematics in ZH $\rightarrow vvbb$ analysis.

		$ZH \rightarrow \ell$					$\rightarrow \ell \nu bb$			$H \to \nu \bar{\nu} bb$	
Bin		p_{T}^{Z} [G	eV		1	p_{T}^{W} [0	[GeV]		$E^{\scriptscriptstyle ext{I}}$	miss [GeV]	
	0-50	50-100	100-200	>200	0-50	50-100	100-200	>200	120-160	160-200	>200
			Nun	nber of ev	ents for 80	$) < m_{bar{b}} <$	150 [GeV]			
Signal	1.3 ± 0.1	1.8 ± 0.2		1		1	1	1.2 ± 0.2	1	$1.2 \pm 0.1 1$	1.5 ± 0.2
Total Bkg	148 ± 10	150 ± 6	67 ± 4	6.9 ± 1.2	596 ± 23	598 ± 16	302 ± 10	27 ± 5	85 ± 8	32 ± 3	20 ± 3
Data	141	163	61	13	614	588	271	15	105	22	25
		Compon	ients of t	he Backgr	ound Rela	tive Syste	ematic Un	certainties	[%]		
B-tag Eff	1.4	1.0	0.3	4.8	0.9	1.3	0.9	7.2	4.1	4.2	5.5
Bkg Norm	3.6	3.4	3.6	3.8	2.7	1.8	1.8	4.5	2.7	2.2	3.2
$\mathrm{Jets}/E_{\mathrm{T}}^{\mathrm{miss}}$	2.1	1.2	2.7	5.1	1.5	1.4	2.1	9.5	7.7	8.2	12.1
Leptons	0.2	0.3	1.1	3.4	0.1	0.2	0.2	1.7	0.0	0.0	0.0
Luminosity	0.2	0.1	0.2	0.4	0.1	0.1	0.1	0.2	0.2	0.5	0.7
Pile Up	0.9	1.6	0.5	1.3	0.1	0.2	0.8	0.5	1.6	2.5	3.0
Theory	5.2	1.3	4.7	14.9	2.2	0.3	1.6	14.8	2.9	4.0	7.7
Total Bkg	6.9	4.3	6.6	17.3	3.9	2.7	3.4	19.6	9.7	10.6	16.0

- **◆** Total background uncertainty : ~3-20 %
 - The highest p_T bins suffer from the highest uncertainties, which limits the improvements from the better S/B.

Leading signal uncertainties

	$ZH \rightarrow \ell^+\ell^-bb$					WH -	$\rightarrow \ell \nu bb$	$ZH \rightarrow \nu \bar{\nu} bb$						
Bin		p_{T}^{Z} [0	GeV			p_{T}^{W} [GeV		E	miss [GeV	1			
	0-50	50-100	100-200	>200	0-50	50-100	100-200	>200	120-160	160-200	>200			
			Nun	nber of ev	ents for 80	$0 < m_{bar{b}} <$	150 [GeV]						
Signal	1.3 ± 0.1	1.8 ± 0.2	1.6 ± 0.2	0.4 ± 0.1	5.0 ± 0.6	5.1 ± 0.6	3.7 ± 0.4	1.2 ± 0.2	2.0 ± 0.2	1.2 ± 0.1	1.5 ± 0.2			
Total Bkg	148 ± 10	150 ± 6	67 ± 4	6.9 ± 1.2	596 ± 23	598 ± 16	302 ± 10	27 ± 5	85 ± 8	32 ± 3	20 ± 3			
Data	141	163	61	13	614	588	271	15	105	22	25			
	Components of the Signal Relative Systematic Uncertainties [%]													
B-tag Eff	6.4	6.4	7.0	13.7	6.4	6.4	7.0	12.1	7.1	8.2	9.2			
$\text{Jets}/E_{\mathrm{T}}^{\mathrm{miss}}$	4.9	3.2	3.5	5.5	5.8	4.6	3.7	3.3	7.3	5.1	6.3			
Leptons	0.9	1.2	1.7	2.6	3.0	3.0	3.0	3.2	0.0	0.0	0.0			
Luminosity	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9			
Pile Up	0.5	1.1	1.8	2.2	1.2	0.3	0.3	1.6	0.2	0.2	0.0			
Theory	4.6	3.6	3.3	5.3	4.4	4.7	5.0	8.0	3.3	3.3	5.6			
Total Signal	10.1	9.1	9.6	16.5	11.4	10.8	11.0	16.0	11.8	11.4	13.4			

- Total signal uncertainty: ~9-17 %
 - ▶ B-tagging: 5-15%

Giacinto Piacquadio

(CERN)

- JES/MET: ~5% (~6% for vvbb)
- → Theory inclusive + differential uncertainties: ~3-8% [CERN Yellow Reports]
 (EW NLO corrections also applied: reduces cross section at high pT)

Combined result

arXiv:1207.0210 (submitted to Phys. Rev. Lett. B)

- Hypothesis testing based on likelihood with m(bb-jet) distribution for signal and background in the signal region (80 GeV < m(bb) < 150 GeV).
- Systematic uncertainties through dependence of normalization and m(bb) shape on additional nuisance parameters, constrained within expected uncertainties.

- 95% confidence level upper limits on signal extracted using CL_s method.
- Expected limits from ~2.5 to ~5 times the Standard Model expectation, observed limits close to expectations (exclude ~4.6xSM at m(H)=125 GeV).
- Most of the sensitivity from WH \rightarrow ℓ vbb and ZH \rightarrow vvbb.
- Looking forward to release 2012 data results!
- In the pipeline: better m(bb) resolution, MV analysis, lower theory systematics.

Backup slides

Trigger and leptonic mode selection

- $\bullet WH \to \ell \nu b\bar{b}$
- Single lepton trigger (ε ~100% w.r.t. offline for e, ε ~90% for μ)
- $ZH \to \ell^+ \ell^- b\bar{b}$
- Single lepton+di-electron trigger (ϵ ~100% for ee, ~95% for $\mu\mu$)
- $ZH \rightarrow \nu \bar{\nu} b \bar{b}$

ETmiss trigger with 70 GeV threshold (ϵ >95% w.r.t. offline selection)

<u>Trigger</u> turn-on curve for ETmiss trigger measured in W+jet data events with \sim 1% level accuracy and extrapolated to ZH \rightarrow vvbb signal using MC.

Missing ET reconstructed from calorimeter energy clusters with $|\eta|$ <4.9 (+corrections). Muons included in the sum. Supplemented by track-based missing pT (pTmiss).

- ▶ <u>Electrons</u>: exploit shower shapes + apply quality requirements to matched track in Inner Detector. Tighter requirements for lvbb.
- Muons: combined Inner Detector Muon System tracks for signal muons, use also Muon System only muons for veto (up to $|\eta|=2.7$).

Multi-jet background

- Suppress multi-jet background
 - ZH → ℓℓbb and WH → ℓvbb: by track- (and calorimeter-) based isolation of the selected charged leptons
 - ZH → vvbb: by requiring:
 - ♦ $|\Delta \phi(\text{ETmiss}, \text{pTmiss})| < \pi/2$
 - → $|\Delta\phi(\text{ETmiss,jets})| > 1.8$
- Estimate from data
 - ZH → ℓℓbb (WH → ℓvbb): multi-jet templates from looser lepton ID (anti-isolation), then estimate based on fit to m(ℓℓ) (Etmiss)

Multi-jet background (II)

ZH → **vvbb**: exploit lack of correlation of $\Delta \phi$ (ETmiss,pTmiss) and $\Delta \phi$ (ETmiss,jets) for multi-jet background to get estimate in signal region:

$$N_{QCD}(A) = \frac{N(B)}{N(D)} \times N(C)$$

$\Delta \phi$ (ETmiss,pTmiss)

$\Delta \phi$ (ETmiss, jets)

Separate limits

