

Sascha Thoma Albert-Ludwigs-Universität Freiburg

On behalf of the ATLAS Collaboration

Melbourne Convention and Exhibition Centre 4th - 12th July 2012

The Higgs bosons in the MSSM

- Two free parameters @ Born level: $m_{_{\Lambda}}$, tan β
- Enhanced coupling to down-type fermions
 - \Rightarrow Enhanced BR(A \rightarrow $\tau^+\tau^-)$
 - \Rightarrow Main production processes shown below $\sigma \sim (\tan \beta)^2$
- BR($A \rightarrow \mu^+ \mu^-$) $\approx 0.04\%$: Challenging, clean signature

Previous results

- 2011, an exciting year:
 Excellent performance of the LHC and the ATLAS experiment
- Search for neutral Higgs boson in the MSSM at ATLAS up to now:

- This talk: Update using
 - The full data set of 2011: $\int L = 4.7 4.8 \, fb^{-1}$
 - The decay modes h/A/H $\rightarrow \tau^+\tau^-$ and h/A/H $\rightarrow \mu^+\mu^-$ (new)

$$h/A/H\!\!\to\mu^+\mu^-$$

$h/A/H \rightarrow \mu^{+}\mu^{-}$

Topological event selection:

2 isolated μ $p_T > 20,15 \,\text{GeV}$, $q_{\mu_1} \times q_{\mu_2} = -1$ $m(\mu,\mu) > 70 \,\text{GeV}$ $E_T^{miss} < 40 \,\text{GeV}$

SE SE

b-vetoed selection:

b-tagged selection:

1b - jet, $p_T > 20 \,\text{GeV}$

$h/A/H \rightarrow \mu^{+}\mu^{-}$: Background Estimation

28.

• Sideband fits to data outside signal windows for each $(m_A, \tan \beta)$

Signal model:

$$\begin{array}{c} h/A/H \!\!\!\!\to \tau^+\tau^- \to e\mu \, 4\nu \\ \hspace{0.5cm} \to e\tau_{_{\hspace{-.1cm}\text{had}}} \, 3\nu, \, \mu\tau_{_{\hspace{-.1cm}\text{had}}} \, 3\nu \\ \hspace{0.5cm} \to \tau_{_{\hspace{-.1cm}\text{had}}} \tau_{_{\hspace{-.1cm}\text{had}}} \, 2\nu \end{array}$$

$h/A/H \rightarrow \tau^+\tau^-$: Common techniques

$Zl\gamma^* \rightarrow \tau^+\tau^-$ embedding:

- Replace muons by simulated τ -leptons $\to Z I \gamma^* \to \tau^+ \tau^-$ event

Multi-jet background:

• From data via control regions

Signal region A Control region B Control region D

Shape

Scaled by B/D

Jets misidentified as τ_{had} :

- Difficult to describe in simulations
 - → Correction factors derived in control regions
 - → Misidentification rate measurements

Mass reconstruction:

- Visible mass: $m_{\tau\tau}^{visible} = \sqrt{(p_{\tau_1} + p_{\tau_2})^2}$
- MMC Mass: (Elagin et. al., NIM A654, 481)

$$\overrightarrow{P}_{T}^{\nu_{1}} + \overrightarrow{P}_{T}^{\nu_{2}} = \overrightarrow{E}_{T}^{\text{miss}}$$

- Scan u momenta wrt. $E_{\scriptscriptstyle T}^{
 m miss}$ resolution
- Calculate mass
- Weight with PDF

$h/A/H \rightarrow \tau^+\tau^- \rightarrow e\mu 4\nu$

Topological event selection:

1 isolated μ & 1 isolated e $p_T^{\mu} > 10 - 20 \text{ GeV}, \quad p_T^e > 15 - 24 \text{ GeV}$ $q(e) \times q(\mu) = -1$ $m(e, \mu) > 30 \text{ GeV}$

 $\Delta \Phi(e,\mu) > 2.0$

Trigger decision dependent

Jet-vetoed selection:

No jets $(p_T > 20 \, \text{GeV})$

b-tagged selection:

 $\begin{array}{c} 1 \quad b\mathrm{-jet}\; (p_T\mathrm{>}20\,\mathrm{GeV})\\ \qquad \qquad \mathrm{No}\; \mathrm{additional}\; \mathrm{b}\mathrm{-jet}\\ p_T^e+p_T^\mu+E_T^{miss}\; <125\;\mathrm{GeV}\\ \cos\Delta\, \varphi(\mu\,,E_T^{miss})+\cos\Delta\, \varphi(e\,,E_T^{miss})\mathrm{>}-0.2\\ \qquad \qquad \sum\, p_T^{jets}\; <100\;\mathrm{GeV} \end{array}$

$h/A/H \rightarrow \tau^+\tau^- \rightarrow e\tau_{had} 3v, \mu\tau_{had} 3v$

Topological event selection:

1 isolated μ , $p_T>20$ GeV OR 1 isolated e, $p_T>25$ GeV $1\tau_{had}$, $p_T>20$ GeV $q(e/\mu)\times q(\tau_{had})=-1$ $m_T=\sqrt{2*p_T^{e/\mu}*E_T^{miss}(1-\cos\Delta\varphi)}<30$ GeV No additional e/μ

b-vetoéd selection:

 $E_T^{miss} > 20 \,\mathrm{GeV}$

b-tagged selection:

$$1 b-jet$$

$$20 GeV < p_T^{b-jet} < 50 GeV$$

$h/A/H \rightarrow \tau^+\tau^- \rightarrow \tau_{\text{had had}} \frac{2\nu}{}$

Topological event selection:

$$2\tau_{had}$$
 $p_T > 45 \& 30 \, \mathrm{GeV}$
 $e \& \mu \, \mathrm{Veto}$
 $E_T^{miss} > 25 \, \mathrm{GeV}$

b-vetoed selection:

For the leading τ_{had} : $p_T > 60 \text{ GeV}$

b-tagged selection:

$$1 b-jet$$

$$20 GeV < p_T^{b-jet} < 50 GeV$$

Results

No excess of events above the expected SM background has been observed in data

95% Confidence Limit exclusion limits based on CL

Limits in the $m_A - \tan \beta$ plane

- $m_{_{h}}^{\mathrm{max}}$, $\mu > 0$
- Fix parameters to obtain a maximum m_h
- μ > 0 favoured by (g-2)_{μ} measurements

Results

No excess of events above the expected SM background has been observed in data

95% Confidence Limit exclusion limits based on CL_s

Results

No excess of events above the expected SM background has been observed in data

95% Confidence Limit exclusion limits based on CL_s

Conclusion

- 2011: Great year of data taking for LHC & ATLAS
 - \rightarrow Update on searches for neutral Higgs bosons in the MSSM (4.7-4.8 fb⁻¹):

- Exploit two dominant Higgs bosons production mechanisms
 - → Dedicated event selections:
 - → b-tagged: b-associated production
 - \rightarrow (b-) Jet vetoed: gluon fusion production
- No excess observed
- MSSM Higgs boson not yet excluded
 - → Very excited & look forward to analyze 2012 data

Thank you for your attention!

Backup

Comparison

Note:

Statistical uncertainties on background predictions were only taken into account for the new exclusion limit, not for the old one!

Coordinates & Objects definitions

ATLAS coordinates:

z: Beam axis φ : azimuthal angle θ : Polar angle wrt. z $\eta = -\ln \tan \beta$ $(\eta = 2.5 \rightarrow \beta \approx 9^{\circ})$

Distances: $\Delta R^2 = \Delta \varphi^2 + \Delta \eta^2$

Electrons:

Calorimeter Cluster & Track $E_T > 15\,\mathrm{GeV}\,/\,\mathrm{c}$ $\eta < 2.47$ Isolation: $E_T^{\Delta R < 0.2} < 8\,\%$ $p_T^{\Delta R < 0.4} < 6\,\%$

Muons:

Muon Spectrometer & Inner Detector track High Track Quality $p_T > 10 \,\text{GeV} / \text{c}$ $\eta < 2.5$ Isolation: $E_T^{\Delta R < 0.2} < 4\%$ $p_T^{\Delta R < 0.4} < 6\%$

τ_{had} :

1 or 3 tracks $E_T > 20 \,\text{GeV} / \text{c}$ $\eta < 2.5$ Tight collimation ID : Multivariate technique (BDT)

Jets:

 k_T Algorithm (ΔR < 0.4) p_T > 20 GeV / c η < 2.5 b-Jet Identification: Multivariate technique (NN)

E_t^{miss} :

All calorimeter Clusters Appropriate calibrations for jets / τ_{had} μ Tracks (Individually for isolated and non-isolated μ)

$h/A/H \rightarrow \tau^+\tau^-$: Common techniques Additional information

$Z/\gamma^* \rightarrow \tau^+\tau^-$ Embedding:

- Select $ZI\gamma^* \rightarrow \mu^+\mu^-$ data (High purity, Signal free)
- Replace μ 's by simulated τ 's

$$\rightarrow$$
 ZI $\gamma^* \rightarrow \tau^+ \tau^-$ event

Mass reconstruction (MMC):

Collinear Approximation:

• MMC Mass: (Elagin et. al., NIM A654, 481)

PDF examples:

Multi-jet background estimation

- Example: $h/A/H \rightarrow \tau^+\tau^- \rightarrow e\tau_{had} 3\nu$, $\mu\tau_{had} 3\nu$:
 - e/μ Isolation: isolated (Iso.) / non-isolated (Non-iso.)
 - $q(\tau_{had}) \times q(e/\mu) = -1 (OS) / +1 (SS)$

- Assume:
 - Variables not correlated for Multi-jet events
 - Mass shape not correlated to these variables

$$n_{ ext{Multi-jet}}^{ ext{Signal Region}} = n_{ ext{Data}}^{ ext{Control Region C}} imes rac{n_{ ext{Data}}^{ ext{Control Region B}}}{n_{ ext{Data}}^{ ext{Control Region D}}}$$

$(h/A/H) \rightarrow \mu^+\mu^-$

Signal modeling: (All resonances (=h/A/H) taken into account)

The ATLAS detector

2011, an exciting year:
 Great performance of the LHC & the ATLAS experiment

Old results

 These next slides show the results for 1.06 fb⁻¹: ATLAS-CONF-2011-132

ZH ZH

 $h/A/H \! \to \mu^+ \mu^- ;$ Unfortunately no public results, yet

SH SH

$$h/A/H {\longrightarrow} \tau^+\tau^-$$

1.06 fb⁻¹: h/A/H $\rightarrow \tau^+\tau^-$: Common

techniques

$Z \rightarrow \tau^+ \tau^-$ Embedding:

- Select $Z \rightarrow \mu^{+}\mu^{-}$ data (High purity, Signal free)
- ullet Replace muons by simulated au-leptons
 - \rightarrow Z \rightarrow $\tau^{+}\tau^{-}$ event

Multi-jet background:

• From data via side band extrapolation

Signal region A

Control region C

Control region B Control region D

Shape

Scaled by B/D

Jets misidentified as τ_{had} :

- Difficult to describe in simulations
- Applies to Multi-jet and W+jets

$$n_{OS}^{Bkg} = n_{SS}^{Bkg} + n_{OS-SS}^{W} + n_{OS-SS}^{Z} + n_{OS-SS}^{other}$$
Data
Simulation,
Corrected to data
Embedding

Mass reconstruction:

Visible Mass:

$$m_{\tau\tau}^{visible} = \sqrt{(p_{\tau_1} + p_{\tau_2})^2}$$

Effective Mass:

$$m_{\tau\tau}^{\text{effective}} = \sqrt{(p_{\tau_1} + p_{\tau_2} + p_T^{\text{miss}})^2}$$

• Collinear Approximation:

- MMC Mass: (Elagin et. al., arXiv:1012.4686) Relaxed collinearity requirement:
 - Scan ν momenta wrt. $E_t^{\it miss}$ Resolution
 - Weight with PDF

1.06 fb⁻¹: h/A/H $\rightarrow \tau^+\tau^-\rightarrow e\mu 4\nu$

Topological event selection:

1 isolated μ & 1 isolated e $p_T^{\mu} > 10 - 20 \,\text{GeV}, \quad p_T^e > 15 - 22 \,\text{GeV}$ $q(e) \times q(\mu) = -1$ $p_T^{\mu} + p_T^e + E_T^{miss} < 120 \,\text{GeV}$ $\Delta \, \phi(e, \mu) > 2.0$

_ Trigger decision dependent

THE PART OF THE PA

$h/A/H \rightarrow \tau^+\tau^- \rightarrow \mu \tau_{had} 2\nu$, $e\tau_{had} 2\nu$

Topological event selection:

1 isolated μ (p_T >20 GeV) or 1 isolated e (p_T >25 GeV) No additional e/μ $1\tau_{had}$ (p_T >20 GeV) $q(e/\mu)\times q(\tau_{had})=-1$

 $E_T^{miss} > 20 \,\text{GeV} \, \& \, m_T = \sqrt{2 \times p_T^{e/\mu} \times E_T^{miss} (1 - \cos \Delta \, \phi)} < 30 \,\text{GeV}$

1.06 fb⁻¹: h/A/H $\rightarrow \tau^+\tau^- \rightarrow \tau_{had} \tau_{had} 2$

Topological event selection:

 $2\tau_{had}$ $p_T > 45 \& 30 \, \mathrm{GeV}$ $e- \& \mu - \mathrm{Veto}$ $E_T^{miss} > 25 \, \mathrm{GeV}$

Results: ATLAS-CONF-2011-132

No excess of events above the expected SM background has been observed in data

95% Confidence Limit exclusion limits based on CL_s

Limits in $(m_A, \tan \beta)$

Individual contributions

Limits on $\sigma \times BR$

