Results from KamLAND-Zen double-beta decay experiment with ¹³⁶Xe

Satoru Yamada (Tohoku University)

Double beta decay

10-1 inverted **OvBB** decay hierarchy 10⁻² 10 10⁻²

< m// >

Minimum neutrino mass of the mass eigenstates

m_{min} / eV

KKDC claim

KamLAND-Zen detector

KamLAND-Zen experiment

KamLAND detector (1kton liquid scintillator(LS) and) and 1879 PMTs) + Xe-loaded liquid Scintillator

13 ton Xe loaded liquid Scintillator in an inner balloon(IB) was Installed in the current KamLAND detector

Ονββ search with KamLAND detector

Advantages

- Well-known detector response
- Surrounded by clean liquid scintillator as a good shield
- Large mass experiment, scalability

Demerits

- Not good energy resolution (6.6%/ \sqrt{E} @ 2.6MeV)
- No particle identification for signal β and b.g. γ

¹³⁶Xe as a target ββ nucleus

- Soluble to liquid scintillator (up to 3wt%)
- Established enrichment method
- Relatively slow 2vββ decay

Target of 1st phase : $<m_{\beta\beta}> ~80meV$ (KKDC claim, degenerated) Future upgrade plan : $<m_{\beta\beta}> ~20meV$

KamLAND-Zen collaboration

A.Gando, Y. Gando, H. Hanakago, H. Ikeda, K. Inoue, K. Ishidoshiro, R. Kato, M. Koga, S. Matsuda, T. Mitsui, T. Nakada, K. Nakamura, A. Obata, A. Oki, Y. Ono, M. Otani, I. Shimizu, J. Shirai, A. Suzuki, Y. Takemoto, K. Tamae, K. Ueshima, H. Watanabe B.D. Xu, S. Yamada, H. Yoshida (RCNS, Tohoku University)
T.I. Banks, J.A. Detwiler, K. Fujikawa, K. Han, T. O'Donnell (UC Berkelsy and LBNL), H.J. Karwowski, D.M. Markoff, W. Tornow (TUNL),
A. Kozlov (Kavli IPMU, University of Tokyo), S. Yoshida (Osaka University),
B.E. Berger (Colorado State university), Y. Efremenko (University of Tennessee),
S. Enomoto (University of Washington), and M.P. Decowski (NIKHEF)

Construction of inner-balloon

Balloon film

- > 25um Nylon film (c.f. KamLAND balloon film = 135um)
- > Low radioactivity (specially made without filler)

Installation of inner-balloon

In a class 10-100 clean room above the KamLAND detector

Install the folded balloon into KamLAND

Corrugate tube connected with the inner-balloon

KamLAND-Zen data and 2vßß decay

Systematic error of $\beta\beta$ halflife due to detector energy scale = 0.3%

Fiducial volume

Inner balloon film

Size

Fiducial volume R < 1.2m ²¹⁴Bi from inner-balloon limited the fiducial volume.

The amount of ²¹⁴Bi is about 8 times larger than expected from the product analysis of the balloon film.

From the energy spectrum of tagged ²¹⁴Po, The impurities are likely on the balloon film surface, not inside the film.

Systematic error for $\beta\beta$ decay half-life measurement

Systematic error of fid. Volume was estimated by checking ²¹⁴Bi event rate inside the inner-balloon. => **5.2%** (dominant in total systematic error : total = 5.2%)

Result of 2vßß decay halflife

Event selection

for ²¹⁴Bi)

within 3ms for Bi-Po

cut noise events

······ ²³⁸U Series → Data (a) -----²³²Th Series - Total ----- Total (0vββ upper limit) ----·²¹⁰Bi Fiducial cut : R<1.2m 10^{3} 136 Xe $0\nu\beta\beta$ - ⁸⁵Kr 2ms veto after muon (90% C.L. upper limit) --- ²⁰⁸Bi Events/0.05MeV 136 Xe2v $\beta\beta$ Peak around 2.6MeV remove consecutive events 10^{2} ----- External BG — · Spallation 2vBB rejection(99.97% rejection 10> Anti-nu CC reaction cut vertex-time-charge test to 10^{-1} Visible Energy (MeV)

<mark>2vββ life</mark>				
	exposure	2vββ life		
1st result Phys.Rev.C85,045504(2 012)	77.6days 129kg of ¹³⁶ Xe	2.38±0.02(stat.)±0.14(sys.) ×10 ²¹ yrs.		
Updated Result arXiv:1205.6372	112.3days 125kg of ¹³⁶ Xe	$2.30\pm0.02(stat.)\pm0.12(sys.)$ × 10 ²¹ yrs.		

Consistent with the EXO-200 results arXiv:1205.5608 $(T_{1/2}=2.23\pm0.017(stat)\pm0.22(syst)\times10^{21}$ years)

Energy spectrum after event selection

$0\nu\beta\beta$ decay and its background

Peak around 2.6MeV region

Features

♦ No significant decrease during 112days

-> Long-lived radioactivity

or muon spallation product in the detector

♦ Uniformly distributed over Xe-LS

Time dependence over 112days

 $(R/1.54m)^3$

0.5

Short-lived nuclei due to muon-spallation in the detector

- > Up to 100s from Muon events
- Check coincident events with muon in KamLAND-Zen data
- -> negligible
- Lifetime from 100s to 30days :
- Using ENSDF(Evaluated Nuclear Structure Data File) database and cross-section data, we found no unstable nuclei to reproduce the observed energy spectrum.

long-lived radioactive impurities (life > 30days)

Use decay information from ENSDF (http://ie.lbl.gov/databases/ensdfserve.html)

- We traced the paths from beta-, beta+ and EC decays and cascade gammas, and made expected visible energy spectra in KamLAND
- Search a peak within 2.4-2.8MeV by eye.
- Apply short lifetime cut (life < 30days).</p>
- Exclude spectra with a higher energy peak (E>2.6MeV), which cannot reproduce the KamLAND-Zen measured spectrum.

Remaining 4 candidates				
	Decay	life	Q[MeV]	
^{110m} Ag	β⁻ + γ	360days	3.01	
⁸⁸ Y	EC + y	154days	3.62	
²⁰⁸ Bi	EC + y	5.31×10^{5} yrs.	2.88	
⁶⁰ Co	β⁻ + γ	7.61 yrs.	2.82	

Example of expected spectrum

Upper limit $\langle m_{BB} \rangle < 0.26 \sim 0.54 \text{ eV} @90\% \text{ C.L.}$

Limits on Majoron-emitting 0vββ decay

Majoron-emitting 0vββ decay mode

Spectral index n is model-dependent and the expected spectrum differs from the $2\nu\beta\beta$ spectrum.

Phase space
$$G = \pi \int (Q_{\beta\beta} - \varepsilon_1 - \varepsilon_2)^n \prod p_k \varepsilon_k f(\varepsilon_k) d\varepsilon_k$$

Using KamLAND-Zen spectrum of $2\nu\beta\beta$ energy region, we can limit the rate of Majoron-emitting $0\nu\beta\beta$ decay.

Ordinary (spectral index n = 1) Majoron-emitting decay of ¹³⁶Xe

$$T_{1/2} > 2.6 \times 10^{24}$$
 years

for $0v2\beta\chi^0$ (one Majoron emission)

$$T_{1/2}^{-1} = |\langle g_{ee} \rangle|^2 \, |M|^2 G$$

 $< g_{ee} >$: effective coupling constant of the Majoron to the neutrino

 $<g_{ee}><$ (0.8-1.6) × 10⁻⁵

This result is a factor of five more stringent limit than the previous one.

Possible b.g. sources for the 2.6MeV peak

Fukushima fallout

- ¹³⁷Cs, ¹³⁴Cs, ^{110m}Ag and ⁸⁸Y were found in soil sample near Fukushima.
- > ¹³⁷Cs and ¹³⁴Cs were found on Balloon film.
 - The ratio of ¹³⁴Cs to ¹³⁷Cs (~0.8) is consistent with that measured in Fukushima soil sample.

Spallation on ¹³⁶Xe on surface

- After enrichment in Russia, ¹³⁶Xe gas cylinders were transported by air to Japan. They were placed on the surface for a few months.
 Cosmic ray spallation may produce radioactive nuclei.
- It is easier to explain the uniform distribution in the inner-balloon, when considiering radio impurities of ¹³⁶Xe gas.
- Using the cross-section data of 1GeV proton + ¹³⁶Xe, energy spectra of spallation products were calculated (right figure)

Purification work is ongoing

➢ KamLAND-Zen is a neutrino-less double beta decay experiment using enriched ¹³⁶Xe loaded liquid scintillator. An inner-balloon was installed inside the current KamLAND detector and data-taking was started on September, 2011.

With an exposure of 112.3days and 125kg of ¹³⁶Xe, the measured 2vββ decay half-life is 2.30±0.02(stat.)±0.12(sys.) × 10²¹ yrs, which is consistent with EXO-200's result.

> There is a peak near the 0vββ energy region. The data were fitted with the spectra of 4 long-lived radioactive nuclei and the obtained lower limit of the 0vββ decay half-life (90% C.L.) is 6.2×10^{24} yr, which corresponds to $\langle m_{\beta\beta} \rangle < 0.26 \sim 0.54$ eV

> Set a new constraint on the Majoron emitting $0v\beta\beta$ decay.

> Purification of Xe-loaded liquid scintillator is on-going. We aim at the reduction to 1% for the 2.6MeV peak.

