ILLUMINATING THE 130GEV Y LINE WITH CONTINUUM PHOTONS JAY WACKER

JULY 6, 2012 ICHEP 2012

ARXIV:1207.0800

T. COHEN M. LISANTI T. SLAYTER

INTRODUCTION

Indirect Detection a promising channel for the discovery of Dark Matter

Two classes of signals: Monochromatic Photons Direct annihilation to photons Continuum Photons Photons from decay of other SM particles, e.g. jets Fermi Gamma Ray Space Telescope

best observatory currently running

WENIGER SIGNAL

Observation of feature in γ spectrum at Fermi at galactic center

Plausible cross section for monochromatic photons

C. Weniger 1204.2797

SIGNAL

Performed our own extraction of 3' GC region

REALISTIC MODELS

What is the origin of this signal?

Typically have both $\gamma \gamma \& \gamma Z^0$ signals Similar Strengths

130 GeV $(\gamma \gamma)$ & 115 GeV (γZ^0) lines

130 GeV (γZ^0) & 145 GeV ($\gamma \gamma$) lines

Usually $\sigma(\gamma Z^0) > \sigma(\gamma \gamma)$

FITTING TO TWO LINES

Can do a fit to both lines

$$\theta_{\gamma_Z/\gamma\gamma} \equiv \arctan \frac{N_{\gamma_Z}}{N_{\gamma\gamma}},$$

Two lines work well

At 2σ, any ratio is allowed

CONTINUUM PHOTONS

Typically have annihilations to other SM states

 $\chi \chi \to WW, b\overline{b}, \tau \tau, \mu \mu$

Often tree-level and much larger Frequently produce many photons

For a specific final state can set a limit on

$$R^{\rm th} \equiv \frac{\sigma_{\rm ann}}{2\,\sigma_{\gamma\gamma} + \sigma_{\gamma_Z}},$$

From the exact same region no astrophysics uncertainty

SUPERSATURATION CONSTRAINT

Should over predict measured photons!

Very conservative constraint: allows signal to be 100% of measurement at 1 energy

Choose the Optimal Bin For Each Final State
b b ~ 5-15 GeVWW, ZZ ~ 10-20 GeVb b ~ 5-15 GeVττ~ 55-65 GeVμμ~ 85-94 GeV

Thursday, July 5, 2012

SUPERSATURATION LIMIT

Excludes tree-level continuum annihilations with loop-level monochromatic annihilations

TYPICAL NEUTRALINO SIGNALS

Wino:

$$\begin{split} \sigma_{\gamma\gamma}v &\simeq 2.5 \times 10^{-27} \text{ cm}^3/\text{s} \\ \sigma_{\gamma_Z}v &\simeq 1.4 \times 10^{-26} \text{ cm}^3/\text{s} \\ \sigma_{\text{ann}}v &\simeq \sigma_{WW}v &\simeq 4.0 \times 10^{-24} \text{ cm}^3/\text{s} \end{split} \implies R^{\text{th}} = 210; \end{split}$$

Higgsino:

$$\begin{aligned} \sigma_{\gamma\gamma}v &\simeq 1.1 \times 10^{-28} \text{ cm}^3/\text{s} \\ \sigma_{\gamma_Z}v &\simeq 3.7 \times 10^{-28} \text{ cm}^3/\text{s} \\ \sigma_{\text{ann}}v &\simeq \sigma_{WW}v + \sigma_{ZZ}v &\simeq 4.2 \times 10^{-25} \text{ cm}^3/\text{s} \end{aligned} \implies R^{\text{th}} = 710. \end{aligned}$$

Bino:

$$\begin{aligned} \sigma_{\gamma\gamma}v &\simeq \text{few} \times 10^{-30} \text{ cm}^3/\text{s}; \\ \sigma_{\gamma_Z}v &\simeq \text{few} \times 10^{-31} \text{ cm}^3/\text{s}; \\ \sigma_{\text{ann}}v &\simeq \sigma_{\ell\bar{\ell}}v &\simeq \text{few} \times 10^{-27} \text{ cm}^3/\text{s}. \end{aligned} \implies R^{\text{th}} \sim 10^3.$$

Dead dead from this modest constraint

MORE THOROUGH STUDY

Scanning throughout MSSM parameter space

USING THE CONTINUUM

SHAPE RESULTS

Places tight constraints! Prefers R<10!

GENERALIMPLICATIONS

Anything of the form

is dead on arrival...

A lot of WIMP models are of this ilk

Need more designer models

POSSIBLE MODELS

Need to have continuum and monochromatic photons coming in at same loop order

Since DM is neutral, means most models will require all annihilations to occur at loop-level

J. Cline 1205.2688

 $m_X < m_S$

CONCLUSIONS

The Fermi γ line Weniger discovered is a plausible signal of DM annihilation

Can comfortably accommodate both a $\gamma\gamma \& \gamma Z^0$ line

Continuum photons from the same galactic region rule out simplest models of dark matter conclusively

Using shape of background can constrain even more models