

ICHEP 2012 Melbourne July 4-12, 2012

Physics with the Bellell Detector

M.Danilov

Institute for Theoretical and Experimental Physics Moscow (Representing the BELLE II Collaboration)

Ground breaking ceremony for SuperKEKB on November 11, 2011

Upgrade of KEKB and Belle in progress (Talk by M.Sevior) TDR published: arXiv:1011.0352v1 [physics.ins-det] Belle II will start data taking in 2015 Aim at 10ab⁻¹ by 2018 and 50ab⁻¹ by 2022

BELLEII DETECTOR

Precision of Unitarity Triangle measurements improved dramatically

ARGUS & CLEO era

Belle precise measurement $sin2\phi_1 = 0.667 \pm 0.023 \pm 0.012$ Belle & BaBar era

CKM Fitter 2012: Indirect prediction World Average measurement

 $sin(2\phi_1) = 0.824^{+0.024}_{-0.028}$ $sin(2\phi_1) = 0.691 \pm 0.020$ Large deviation

Precise measurements of UT are still highly important !!!

Expected sensitivity for UT parameters at 50ab⁻¹

(arXiv:1002.5012)

Observable	Belle 2006 SuperKEKB		KEKB	$^{\dagger}LHCb$	
	$(\sim 0.5 \text{ ab}^{-1})$	(5 ab^{-1})	(50 ab^{-1})	(2 fb^{-1})	(10 fb^{-1})
Unitarity triangle parameters					
$\sin 2\phi_1$	0.026	0.016	0.012	~ 0.02	${\sim}0.01$
$\phi_2 (\pi\pi)$	11°	10°	3°	-	-
$\phi_2 \ (\rho \pi)$	$68^{\circ} < \phi_2 < 95^{\circ}$	3°	1.5°	10°	4.5°
$\phi_2 \ (\rho \rho)$	$62^\circ < \phi_2 < 107^\circ$	3°	1.5°	-	-
$\phi_2 \text{ (combined)}$		2°	$\lesssim 1^{\circ}$	10°	4.5°
ϕ_3 ($D^{(*)}K^{(*)}$) (Dalitz mod. ind.)	20°	7°	2°	8°	
$\phi_3 (DK^{(*)}) (ADS+GLW)$	-	16°	5°	$5 - 15^{\circ}$	
$\phi_3 (D^{(*)}\pi)$	-	18°	6°		
$\phi_3 \text{ (combined)}$		6°	1.5°	4.2°	2.4°
$ V_{ub} $ (inclusive)	6%	5%	3%	-	-
$ V_{ub} $ (exclusive)	15%	12% (LQCD)	5% (LQCD)	-	-
$^{\dagger\dagger\dagger}\bar{\rho}$	20.0%		3.4%		
$^{\dagger\dagger\dagger}\bar{\eta}$	15.7%		1.7%		

BELLEII in many cases is more sensitive to UT parameters than LHCb

UT with present central values but with 50ab⁻¹ errors

New phases can lead to inconsistency of UT.

New Source of CPV in $b \rightarrow sq\bar{q}$

Direct CPV

t-dependent CPV

 $B \rightarrow K^* (\rightarrow K_S \pi^0) \gamma$ t-dependent CPV

 $\begin{array}{l} SM:\\ S_{CP}{}^{K^*\gamma} ~\sim \text{-}(2m_s\!/m_b) sin2\phi_1 \sim \text{-}0.04 \end{array}$

Left-Right Symmetric Models: $S_{CP}^{K^*\gamma} \sim 0.67 \cos 2\phi_1 \sim 0.5$

D. Atwood et al., PRL79, 185 (1997) B. Grinstein et al., PRD71, 011504 (2005)

$$S_{CP}^{K_{S\pi}0\gamma} = -0.15 \pm 0.20$$

 $A_{CP}^{K_{S\pi}0\gamma} = -0.07 \pm 0.12$

HFAG, Summer'11

$$σ(S_{CP}^{K_{S\pi}0\gamma}) = 0.09 @ 5 ab^{-1}
0.03 @ 50 ab^{-1}
(~SM prediction)$$

t-dependent decays rate of $B \to f_{CP}$; S and A: CP violating parameters $P(B^0 \to f; \Delta t) = \frac{e^{-|\Delta t|/\tau}}{4\tau} [1 + S_{CP}^f \sin(\Delta m \Delta t) +$

Example of complementarity: MSSM searches

$$m_{\tilde{q}} = m_{\tilde{g}} = 1 TeV$$

 $S(K_{s}\pi^{0}\gamma) \sim -0.4\pm0.1$
 $S(K_{s}\pi^{0}\gamma) \sim 0.1\pm0.1$

Belle II constraints shown @ 5 ab⁻¹

LHCb: Br(B_s
$$\rightarrow \mu^{+}\mu^{-}$$
)~ (4-5)x10⁻⁹ (@ 3 fb⁻¹)

Belle II/LHCb combination: stringent limits on Re(δ^{d}_{RL})₂₃, tan β

Charged Higgs in B decays

Expected sensitivity at Belle

Belle II is sensitive to a wide range of Higgs masses and tan β Belle II sensitivity is higher than in direct searches at LHC

В⇒ D(*)т∨

Recent BaBar result excludes Type II 2DHM since allowed regions for D and D* decays do not overlap

With SM predictions constraints would be weaker We underestimated the sensitivity of these channels!

May be we underestimate sensitivity of other channels as well!

LFV and New Physics

Higgs mediated decays. Important for MSUSY>>EW scale

Bkg. free. UL~1/L

Different models predict different relations for μ and tau decays

model	Br(τ→μγ)	Br(τ→ℓlℓ)
mSUGRA+seesaw	10-7	10 ⁻⁹
SUSY+SO(10)	10-8	10-10
SM+seesaw	10 ⁻⁹	10-10
Non-Universal Z'	10 ⁻⁹	10-8
SUSY+Higgs	10-10	10-7

Belle II sensitivity for LFV covers predictions of many models

CP Violation in Charm Decays Sensitive to New Physics

Belle II can study CPV in many D decays including neutral. Complimentary to LHCb

Spectroscopy issues for Belle II

Belle discovered Zb⁺

Do they come from a new resonance? Peak in $\Upsilon \pi + \pi$ - is 2σ away from Υ (5S)

Is there Zc⁺ analogue of Zb⁺ in Y(4260) $\rightarrow \pi + \pi - J/\psi$? Hint but inconclusive. Need more data!

Many other questions: Remaining narrow states (η_2) Search for new (exotic) states Properties of discovered states Exclusive Y decays Searches for new particles

Methods and processes where Super B factory can provide important insight into NP complementary to other experiments: (shown are expected sensitivities @ 50 ab-1)

$\begin{array}{l} E_{miss}:\\ \mathcal{B}(B \to \tau \nu), \ \mathcal{B}(B \to X_c \tau \nu), \ \mathcal{B}(B \to h \nu \nu), \dots \\ \pm 3\% \qquad \pm 3\% \qquad \pm 3\% \qquad \pm 30\% \end{array}$

Inclusive:

 $\begin{array}{ll} \mathcal{B}(B \to s\gamma), \ A_{CP}(B \to s\gamma), \ \mathcal{B}(B \to s\ell\ell), \ \dots \\ \pm 6\% & \pm 5 \cdot 10^{-3} & \pm 1 \cdot 10^{-7} \end{array}$

Neutrals:

$$\begin{array}{ccc} S(B \to K_{\rm S} \pi^0 \gamma), \ S(B \to \eta' K_{\rm S}), \ S(B \to K_{\rm S} K_{\rm S} K_{\rm S}), \ \mathcal{B}(\tau \to \mu \gamma), \ \mathcal{B}(B_{\rm s} \to \gamma \gamma), \ \dots \\ \pm 0.03 & \pm 0.02 & \pm 0.03 & \pm 3 \cdot 10^{-9} & \pm 3 \cdot 10^{-7} \end{array}$$

Missing mass technique: Spectroscopy(Zb,...), Inclusive Production (Double Charm),

Detailed description of physics program at Super B factories at:

A.G. Akeroyd et al., arXiv: 1002.5012

Physics at Super B Factory

B. O'Leary et al., arXiv: 1008.1541

 ${f Super}{B}$ Progress Reports

Physics

Construction of SuperKEKB/Belle II started Start of commissioning in 2015 Luminosity goals: L=8x10³⁵ cm⁻²s⁻¹; 10ab⁻¹ by 2018, 50ab⁻¹ by 2022 **Exciting physics program** Upgraded detector capable to reach the physics goals **Experienced worldwide collaboration**

Backup Slides

D mixing and CPV

Mass & flavor eigenstates differ:

$$-|D_{1,2}>=p|D^{0}>\pm q|\overline{D^{0}}>$$

- Note: if $p \neq q$, CP is violated.
- Mixing parameterized by mass/width splittings:

$$x \equiv rac{(m_1 - m_2)}{\Gamma}$$
 $y \equiv rac{(\Gamma_1 - \Gamma_2)}{2\Gamma}$

- Three sources: $A_{CP}(D \to f) = \frac{\Gamma(D \to f) \Gamma(\bar{D} \to \bar{f})}{\Gamma(D \to f) + \Gamma(\bar{D} \to \bar{f})} = a_f^d + a_f^m + a_f^i$
 - Mixing (a_f^m) :

$$|q/p| \neq 1$$

- Decay (a_f^d): $|\mathcal{A}(D \to f) / \mathcal{A}(\bar{D} \to \bar{f})| \neq 1$
- Interference between mixing and direct:

$$\phi = \arg\left(\frac{qA(\bar{D} \rightarrow \bar{f})}{pA(D \rightarrow f)}\right)$$

B factory provides much better constraints on H[±] than LHC with 30fb⁻¹ and 14TeV

2HDM(II) U.Haisch arXiv:0805.2141

E_{miss} measurements

